Home
Class 12
MATHS
Let the equation x^(5) + x^(3) + x^(2) ...

Let the equation `x^(5) + x^(3) + x^(2) + 2 = 0` has roots `x_(1), x_(2), x_(3), x_(4) and x_(5),` then find the value of `(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).`

Text Solution

Verified by Experts

The correct Answer is:
5

`x^(5) + x^(3) + x^(2) + 2 = (x -x_(1)) (x -x_(2))(x -x_(3))(x -x_(4))(x -x_(5))`
Putting x = 1, we get,
`5 = (1 -x_(1)) (1 -x_(2))(1 -x_(3))(1 -x_(4))(1 -x_(5))`
Putting x = - 1, we get,
`1 = (-1 -x_(1)) (-1 -x_(2))(-1 -x_(3))(-1 -x_(4))(-1 -x_(5))`
Multiplying, we get,
`5 = (x_(1)^(2) - 1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.3|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.4|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Exercise 2.1|3 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If(x+2)+(1)/(x+2)=5 then find the value of (x+2)^(3)+(1)/((x+2)^(3))

If x^(2)-5x+1=0 , then the value of (x^(4) + (1)/(x^(2))) div (x^(2)+1) is

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

(b) Find the square root of 4x^(4) - 4x^(3) + 5x^(2) -2x +1

If x_(1),x_(2),x_(3) are the roots of x^(3)+ax^(2)+b=0, the value of x_(2)x_(3),x_(1)x_(3),x_(1),x_(2)]|

If f(x)=x^(5)+x^(2)+1 has roots x_(1),x_(2),x_(3),x_(4),x_(5) and g(x)=x^(2)-2 then g(x_(1))g(x_(2))g(x_(3))g(x_(4))g(x_(5))-30g(x_(1)x_(2)x_(3)x_(4)x_(5))=