Home
Class 12
MATHS
Find the value of (1+ i)^(6) + (1-i)^(6)...

Find the value of `(1+ i)^(6) + (1-i)^(6)`

A

`16i`

B

`0`

C

`-16i`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((1 + i)^6 + (1 - i)^6\), we can follow these steps: ### Step 1: Express the complex numbers in polar form The complex numbers \(1 + i\) and \(1 - i\) can be expressed in polar form. For \(1 + i\): - The modulus is \(|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}\). - The argument (angle) is \(\tan^{-1}(1/1) = \frac{\pi}{4}\). Thus, we can write: \[ 1 + i = \sqrt{2} \left( \cos\frac{\pi}{4} + i \sin\frac{\pi}{4} \right) \] For \(1 - i\): - The modulus is \(|1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{2}\). - The argument is \(\tan^{-1}(-1/1) = -\frac{\pi}{4}\). Thus, we can write: \[ 1 - i = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \] ### Step 2: Raise to the power of 6 Using De Moivre's theorem, we can raise these complex numbers to the power of 6. For \((1 + i)^6\): \[ (1 + i)^6 = \left(\sqrt{2}\right)^6 \left( \cos\left(6 \cdot \frac{\pi}{4}\right) + i \sin\left(6 \cdot \frac{\pi}{4}\right) \right) \] Calculating: \[ \left(\sqrt{2}\right)^6 = 2^3 = 8 \] And: \[ 6 \cdot \frac{\pi}{4} = \frac{3\pi}{2} \] Thus: \[ (1 + i)^6 = 8 \left( \cos\left(\frac{3\pi}{2}\right) + i \sin\left(\frac{3\pi}{2}\right) \right) = 8(0 - i) = -8i \] For \((1 - i)^6\): \[ (1 - i)^6 = \left(\sqrt{2}\right)^6 \left( \cos\left(6 \cdot -\frac{\pi}{4}\right) + i \sin\left(6 \cdot -\frac{\pi}{4}\right) \right) \] Calculating: \[ (1 - i)^6 = 8 \left( \cos\left(-\frac{3\pi}{2}\right) + i \sin\left(-\frac{3\pi}{2}\right) \right) = 8(0 + i) = 8i \] ### Step 3: Add the results Now, we add the two results: \[ (1 + i)^6 + (1 - i)^6 = -8i + 8i = 0 \] ### Final Answer Thus, the value of \((1 + i)^6 + (1 - i)^6\) is: \[ \boxed{0} \]

To find the value of \((1 + i)^6 + (1 - i)^6\), we can follow these steps: ### Step 1: Express the complex numbers in polar form The complex numbers \(1 + i\) and \(1 - i\) can be expressed in polar form. For \(1 + i\): - The modulus is \(|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}\). - The argument (angle) is \(\tan^{-1}(1/1) = \frac{\pi}{4}\). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Find the values of (-i)^(1/6

Find the value of (1+i)^(3)+(1-i)^(6)

1) Find the value of i^(i)

Find the value of (1+i)(1+i^(2))(1+i^(3)) .

Find the value of (1+i)(1+i^(2))(1+i^(3))(1+i^(4))

Find the value of 1 + 1/( 1 + 1/6 )

Find the value of i^(2)+(-i)^(4)-i^(6) .

Find the value of 1+i^2+i^4+i^6

Find the value of (3+(2)/(i))(i^(6)-i^(7))(1+i^(11))

Find the value of i^(2)+(-i)^(4)-i^(6)

CENGAGE-COMPLEX NUMBERS-Examples
  1. Express each of the following in the standerd from a + ib (i) (5+...

    Text Solution

    |

  2. The root of the equation 2(1 + i) x^2-4(2-i) x-5-3 i = 0, where i = sq...

    Text Solution

    |

  3. Find the value of (1+ i)^(6) + (1-i)^(6)

    Text Solution

    |

  4. If ((1+i)/(1-i))^m=1, then find the least positive integral value of m...

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. Find the value of theta if (3+2isintheta)/(1-2isintheta) is purely rea...

    Text Solution

    |

  7. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  8. If z is a complex number such that |z - barz| +|z + barz| = 4 then fi...

    Text Solution

    |

  9. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  10. If z = x + iy lies in the third quadrant, then prove that (barz)/(z) ...

    Text Solution

    |

  11. Prove that (sqrt(3)/(2) +(i)/(2))^(5) + (sqrt(3)/(2) -(i)/(2))^(5) is...

    Text Solution

    |

  12. Find the relation if z1, z2, z3, z4 are the affixes of the vertices of...

    Text Solution

    |

  13. Let z1, z2, z3 be three complex numbers and a ,b ,c be real numbers no...

    Text Solution

    |

  14. Find real values of x and y for which the complex numbers -3+i x^2y an...

    Text Solution

    |

  15. Given that x, y in R. Solve: x/(1+2i)+y/(3+2i)=(5+6i)/(8i-1)

    Text Solution

    |

  16. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  17. Let z be a complex number satisfying the equation z^3-(3+i)z+m+2i=0,w ...

    Text Solution

    |

  18. Show that the equation Z^4+2Z^3+3Z^2+4Z+5=0 has no root which is eithe...

    Text Solution

    |

  19. Find the square roots of the following: (i) 7-24 i (ii) 5+12 i

    Text Solution

    |

  20. Find all possible values of sqrt(i)+sqrt(-i)dot

    Text Solution

    |