Home
Class 12
MATHS
Z1!=Z2 are two points in an Argand plane...

`Z_1!=Z_2` are two points in an Argand plane. If `a|Z_1|=b|Z_2|,` then prove that `(a Z_1-b Z_2)/(a Z_1+b Z_2)` is purely imaginary.

Text Solution

Verified by Experts

Let `Z_(1) = r_(1) e^(itheta),Z_(2) =r_(2)e^(i(theta + alpha))` Given that `ar_(1) = br_(2)`
`therefore Z = (aZ_(1) - bZ_(2))/(aZ_(1) + bZ_(2))=(e^(itheta)-e^(i(theta + alpha)))/(e^(itheta) + e^(itheta+alpha))`
`= (1-e^(ialpha))/(1+e^(ialpha))" "("Dividing Nr. and Dr. by" e^(itheta))`
`(e^(-ialpha//2)-e^(ialpha//2))/(e^(-ialpha//2) + e^(ialpha//2))" "("Dividing Nr. and Dr.by " e^(ialpha//2))`
`= (-2i sin.(alpha)/(2))/(2cos.(alpha)/(2))`
`=-i tan .(alpha)/(2)`
Hence, Z is purely imaginary.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Z_(1)!=Z_(2) are two points in an Argand plane.If a|Z_(1)|=b|Z_(2)|, then prove that (aZ_(1)-bZ_(2))/(aZ_(1)+bZ_(2)) is purely imaginary.

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

Prove that |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 if z_1/z_2 is purely imaginary.

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

Let z_1, z_2 be two complex numbers with |z_1| = |z_2| . Prove that ((z_1 + z_2)^2)/(z_1 z_2) is real.

If the triangle fromed by complex numbers z_(1), z_(2) and z_(3) is equilateral then prove that (z_(2) + z_(3) -2z_(1))/(z_(3) - z_(2)) is purely imaginary number

Let A(z_1),B(z_2) and C(z_3) be the vertices of an equilateral triangle in the Argand plane such that |z_1|=|z_2|=|z_3|. Then (A) (z_2+z_3)/(2z_1-z_2-z_3) is purely real (B) (z_2-z_3)/(2z_1-z_2-z_3) is purely imaginary (C) |arg(z_1/z_2)|=2 arg((z_3-z_2)/(z_1-z_2))| (D) none of these

Find the locus of point z in the Argand plane if (z-1)/(z+1) is purely imaginary.

CENGAGE-COMPLEX NUMBERS-Examples
  1. Prove that traingle by complex numbers z(1),z(2) and z(3) is equilate...

    Text Solution

    |

  2. Show that e^(2m itheta)((icottheta+1)/(i cottheta-1))^m=1.

    Text Solution

    |

  3. Z1!=Z2 are two points in an Argand plane. If a|Z1|=b|Z2|, then prove t...

    Text Solution

    |

  4. Find the real part of (1-i)^(-i)dot

    Text Solution

    |

  5. If (sqrt(8)+i)^(50)=3^(49)(a+i b) , then find the value of a^2+b^2dot

    Text Solution

    |

  6. Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

    Text Solution

    |

  7. If a rg(z1)=170^0a n d arg(z2)70^0 , then find the principal argument ...

    Text Solution

    |

  8. Find the value of expression (cospi/2+is inpi/2)(cospi/(2^2)+is inpi/(...

    Text Solution

    |

  9. Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))...

    Text Solution

    |

  10. If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

    Text Solution

    |

  11. If z=x+i ya n dw=(1-i z)/(z-i) , show that |w|=1 z is purely real.

    Text Solution

    |

  12. It is given the complex numbers z(1) and z(2), |z(1)| =2 and |z(2)| ...

    Text Solution

    |

  13. Solve the equation z^(3) = barz (z ne 0)

    Text Solution

    |

  14. If 2z1//3z2 is a purely imaginary number, then find the value of "|"(z...

    Text Solution

    |

  15. Find the complex number satisfying the system of equations z^3+ omega^...

    Text Solution

    |

  16. Express the following in a + ib form: (i) ((cos theta+ isin theta...

    Text Solution

    |

  17. If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

    Text Solution

    |

  18. Prove that the roots of the equation x^4-2x^2+4=0 forms a rectangle.

    Text Solution

    |

  19. If z+1//z=2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

    Text Solution

    |

  20. If z=x+iy is a complex number with x, y in Q and |z| = 1, then show ...

    Text Solution

    |