Home
Class 12
MATHS
Find the complex number satisfying the s...

Find the complex number satisfying the system of equations `z^3+ omega^7=0a n dz^5omega^(11)=1.`

Text Solution

Verified by Experts

`z^(3)+bar(omega)^(7)=0`
`impliesz^(3)=-bar(omega)^(7)`
`implies|z|^(3)=|-bar(omega)|^(7)=|omega|^(7)`
`implies|z|^(15)=|omega|^(35)`
Also, `z^(5)omega^(11)=1`
`implies|z|^(5)|omega|^(11)=1`
`implies|z|^(15)|omega|^(33)=1`
From (1) and (2), we have
`|z|=|omega|=1`
Again, `bar(omega)^(7)=-z^(3)" and "omega^(11)=z^(-5)`
`impliesbar(omega)^(77).omega^(77)=-z^(33).z^(-35)`
`impliesz^(2)=-1=i^(2)impliesz=+-i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

The complex number z satisfying the equation |z-i|=|z+1|=1

Find the number of values of complex numbers omega satisfying the system of equations z^(3)==(overlineomega)^(7) and z^(5).omega^(11)=1

Find number of values of complex numbers omega satisfying the system of equaltion z^(3)=-(bar(omega))^(7) and z^(5).omega^(11)=1

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0

If the complex number z and omega satisfies z^(3)+omega^(-7)=0 and z^(5)*omega^(11)=1 then

IF agt=1 , find all complex numbers z satisfying the equation z+a|z+1|+i=0

Non-real complex number z satisfying the equation z^(3)+2z^(2)+3z+2=0 are

Find the complex number omega satisfying the equation z^(3)=8i and lying in the second quadrant on the complex plane.

Number of values of z (real or complex) simultaneously satisfying the system of equations 1+z+z^(2)+z^(3)++z^(17)=0 and 1+z+z^(2)+z^(3)++z^(13)=0 is

The number of values of z (real or complex) e simultaneously satisfying the system of equations 1+z+z^2+z^3+...z^17=0 and 1+z+z^2+z^3+..+z^13=0 is

CENGAGE-COMPLEX NUMBERS-Examples
  1. Solve the equation z^(3) = barz (z ne 0)

    Text Solution

    |

  2. If 2z1//3z2 is a purely imaginary number, then find the value of "|"(z...

    Text Solution

    |

  3. Find the complex number satisfying the system of equations z^3+ omega^...

    Text Solution

    |

  4. Express the following in a + ib form: (i) ((cos theta+ isin theta...

    Text Solution

    |

  5. If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

    Text Solution

    |

  6. Prove that the roots of the equation x^4-2x^2+4=0 forms a rectangle.

    Text Solution

    |

  7. If z+1//z=2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

    Text Solution

    |

  8. If z=x+iy is a complex number with x, y in Q and |z| = 1, then show ...

    Text Solution

    |

  9. If z=costheta+isintheta is a root of the equation a0z^n+a2z^(n-2)++a(n...

    Text Solution

    |

  10. If |z1|=1,|z2|=2,|z3|=3,a n d|9z1z2+4z1z3+z2z3+3|=12 , then find the v...

    Text Solution

    |

  11. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  12. Prove that |z1+z2|^2=|z1|^2, ifz1//z2 is purely imaginary.

    Text Solution

    |

  13. Let |(z(1) - 2z(2))//(2-z(1)z(2))|= 1 and |z(2)| ne 1, where z(1) and...

    Text Solution

    |

  14. If z1a n dz2 are two complex numbers and c >0 , then prove that |z1+z2...

    Text Solution

    |

  15. If z1, z2, z3, z4 are the affixes of four point in the Argand plane, z...

    Text Solution

    |

  16. if |z1+z2|=|z1|+|z2|, then prove that a r g(z1)=a r g(z2) if |z1-z2|=...

    Text Solution

    |

  17. Show that the area of the triangle on the Argand diagram formed by the...

    Text Solution

    |

  18. Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

    Text Solution

    |

  19. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  20. If z is a complex number, then find the minimum value of |z|+|z-1|+|2z...

    Text Solution

    |