Home
Class 12
MATHS
If z1a n dz2 are two complex numbers and...

If `z_1a n dz_2` are two complex numbers and `c >0` , then prove that `|z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot`

Text Solution

Verified by Experts

We have to prove
`|z_(1)+z_(2)|^(2)le(1+c)|z_(1)|^(2)+(1+c^(-1))|z_(2)|^(2)`
or `|z_(1)|^(2)+|z_(2)|^(2)+z_(1)bar(z)_(2)le(1+c)|z_(1)|^(2)+(1+c^(-1))|z_(2)|^(2)`
or `z_(1)bar(z)_(2)+bar(z)_(1)z_(2)lec|z_(1)|^(2)+c^(-1)|z_(2)|^(2)`
or `c|z_(1)|^(2)+(1)/(c)|z_(2)|^(2)-z_(1)bar(z)_(2)-bar(z)_(1)z_(2)ge0" "["using Re "(z_(1)bar(z)_(2))le|z_(1)bar(z)_(2)|]`
or `|sqrt(c)z_(1)-(1)/(sqrt(c))z_(2)|^(2)ge0`
which is always true.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two complex numbers and c>0, then prove that |z_(1)+z_(2)|^(2)<=(1+c)|z_(1)|^(2)+(1+c^(-1))|z_(2)|^(2)

If z_(1) and z_(2) are two complex numbers and c>0 then prove that (z_(1)+z_(2))^(2)<=(1+c)|z_(1)|^(2)+(1+c^(-1))|z_(2)|^(2)

If z_1 and z_2 are two complex numbers, then prove that |z_1 - z_2|^2 le (1+ k)|z_1|^2 +(1+K^(-1) ) |z_2|^2 AA k in R^(+) .

If z_(1) and z_(2) are two complex numbers then prove that |z_(1)-z_(2)|^(2)<=(1+k)z_(1)^(2)+(1+(1)/(k))z_(2)^(2)

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)|+|z_(1)-z_(2)| then

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

If z_(1) and z_(2) are two complex numbers such that z_(1)+2,1-z_(2),1-z, then

If z_(1) and z_(2)(ne0) are two complex numbers, prove that: (i) |z_(1)z_(2)|=|z_(1)||z_(2)| (ii) |(z_(1))/(z_(2))|=(|z_(1)|)/(|z_(2)|),z_(2)ne0 .

For any two complex number z_(1) and z_(2) prove that: |z_(1)+z_(2)|>=|z_(1)|-|z_(2)|

CENGAGE-COMPLEX NUMBERS-Examples
  1. Prove that |z1+z2|^2=|z1|^2, ifz1//z2 is purely imaginary.

    Text Solution

    |

  2. Let |(z(1) - 2z(2))//(2-z(1)z(2))|= 1 and |z(2)| ne 1, where z(1) and...

    Text Solution

    |

  3. If z1a n dz2 are two complex numbers and c >0 , then prove that |z1+z2...

    Text Solution

    |

  4. If z1, z2, z3, z4 are the affixes of four point in the Argand plane, z...

    Text Solution

    |

  5. if |z1+z2|=|z1|+|z2|, then prove that a r g(z1)=a r g(z2) if |z1-z2|=...

    Text Solution

    |

  6. Show that the area of the triangle on the Argand diagram formed by the...

    Text Solution

    |

  7. Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

    Text Solution

    |

  8. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  9. If z is a complex number, then find the minimum value of |z|+|z-1|+|2z...

    Text Solution

    |

  10. If |z1-1|lt=,|z2-2|lt=2,|z(33)|lt=3, then find the greatest value of |...

    Text Solution

    |

  11. Prove that following inequalities: (i) |(z)/(|z|) -1| le |arg z| (...

    Text Solution

    |

  12. Identify the locus of z if z = a +(r^2)/(z-a),> 0.

    Text Solution

    |

  13. If z is any complex number such that |3z-2|+|3z+2|=4 , then identify t...

    Text Solution

    |

  14. If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus o...

    Text Solution

    |

  15. Let z be a complex number having the argument theta,0<theta<pi//2,a n ...

    Text Solution

    |

  16. How many solutions the system of equations ||z + 4 |-|z-3i|| =5 and...

    Text Solution

    |

  17. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  18. If |z-2-3i|^(2) + |z- 5 - 7i|^(2)= lambda respresents the equation ...

    Text Solution

    |

  19. If (|2z - 3|)/(|z-i|)= k is the equation of circle with complex numbe...

    Text Solution

    |

  20. Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d ...

    Text Solution

    |