Home
Class 12
MATHS
If Z^5 is a non-real complex number, the...

If `Z^5` is a non-real complex number, then find the minimum value of `(Imz^5)/(Im^5z)`

Text Solution

Verified by Experts

The correct Answer is:
`-4`

Let z= a+ ib,
`b ne 0` where Im Z = b
`therefore " " Z^(5) = (a+ib)^(5)`
`= a^(5) + 5a^(4) bi + 10^(3)b^(2)i^(2) + 10a^(2)b^(3)i^(2) + 5ab^(4)i^(4) + i^(5)b^(5)`
`therefore" " Lm z^(5)=5a^(4)b- 10a^(2)b^(3) + b^(5)`
`y= (ImZ^(5))/((ImZ^(5)))=((a)/(5))^(2)-10((a)/(b))^(2)+1`
`= 5[((a)/(b))^(4)-2((a)/(b))^(2)+(1)/(5)]`
`=5[(((a)/(b))^(2)-1)^(2) +(1)/(5)-1]`
`=5(((a)/(b))^(2)-1)^(2)=4`
So, `y_("min")= -4`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.4|7 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.1|4 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If Z^(5) is a non-real complex number,then find the minimum value of (Imz^(5))/(Im^(5)z)

For any complex number z find the minimum value of |z|+|z-2i|

If z is a complex number,then find the minimum value of |z|+|z-1|+|2z-3|

If z is a complex number, then the minimum value of |z|+|z-1| is -

For any complex number z, the minimum value of |z|+|z-1|

If z is a complex number such that |z|>=2 then the minimum value of |z+(1)/(2)| is