Home
Class 12
MATHS
Find the modulus, argument, and the prin...

Find the modulus, argument, and the principal argument of the complex numbers. (i) `(tan1-i)^2`

Text Solution

Verified by Experts

`z = (tan1 - i)^(2) = (tan^(2) 1-1)- (2 tan1)i`
`|z|= sqrt((tan^(2)1-1)^(2) + 4 tan^(2)1)=sqrt((tan^(2)1+1)^(2))= sec^(2)1`
Since `tan^(2) 1- 1 lt 0 and -2 tan 1 lt 0,` so z lies in the third quadrant.
`rArr " " arg(z) = - pi + tan^(-1)|(2 tan1)/(1-tan^(2))| = - pi + tan^(-1)|tan2| = 2pi`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.4|7 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Find the modulus,argument,and the principal argument of the complex numbers.(i-1)/(i(1-cos((2 pi)/(5)))+(sin(2 pi))/(5))

Find the modulus,argument and the principal argument of the complex numbers: a z=1+cos((10 pi)/(9))+i sin((10 pi)/(9))(b)z=-2(cos30^(@)+i sin30^(@))

Find the principal argument of (-2i).

Find the argument and the principal value of the argument of the complex number z=(2+i)/(4i+(1+i)^(2)) where i=sqrt(-1)

Find the modulus and argument of -4i.

Find the principal argument of the complex number sin(6 pi)/(5)+i(1+cos(6 pi)/(5))

The argument of the complex number (1 +i)^(4) is

Find the modulus and the argument of the complex number -(16)/(1+i sqrt(3))