Home
Class 12
MATHS
If z=r e^(itheta) , then prove that |e^(...

If `z=r e^(itheta)` , then prove that `|e^(i z)|=e^(-r s inthetadot)`

Text Solution

Verified by Experts

`z = re^(i0) = r (cos theta + i sin theta)`
`rArr iz = ir (cos theta + i sin theta)`
`=- rsin theta + ir cos theta`
`rArr e^(1z) = e^((-rsin theta+ ir cos theta))`
`= e^((-rsin theta)) e^((ri cos theta))`
`rArr |e^(iz)|=|e^(-rsin theta)||e^(r icos theta)|`
`= e^((- r sin theta))|e^(ialpha)|," ""where"alpha = r cos theta`
`= e^(-rsin theta)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.4|7 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

If z= 5e^(itheta), then |e^(iz)| is equal to

If z=re^(i)theta then |e^(iz)| is equal to:

The value of |e^(z)|=

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

Read the following writeup carefully: In argand plane |z| represent the distance of a point z from the origin. In general |z_1-z_2| represent the distance between two points z_1 and z_2 . Also for a general moving point z in argand plane, if arg(z) =theta , then z=|z|e^(itheta) , where e^(itheta) = cos theta + i sintheta . Now answer the following question If |z-(3+2i)|=|z cos ((pi)/(4) - "arg" z)|, then locus of z is