Home
Class 12
MATHS
Let An=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-...

Let `A_n=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-1)(3/4)^n and B_n = 1-A_n. find the least odd nastural numebr s`n_0, so that B_ngtA_n Aangen_0`

Text Solution

Verified by Experts

The correct Answer is:
6

`a_(n)=3/4-(3/4)^(3)+(3/4)^(3)+…+(-1)^(n-1)(3/4)^(n)`
`(((3)/(4)(1-(-3)/(4))^(n)))/(1-((3)/(4)))=(3)/(7)(1-((-3)/(4))^(n))`
Now, `b_(n)=1-a_(n) and b_(n)gta_(n)` for `ngen_(0)`
`therefore1-a_(n)gta_(n)` or `2a_(n)lt1`
or `6/7[1-(-3/4)?^(n)]lt1`
or `-(-3/4)^(n)lt1/6`
or `(-3)^(n+1)lt2^(2n-1)`
for n to be even, inequality always holds. For n to be odd, it holds for `nge7`. Therefore, the least natural number for which it holds is 6.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.4|13 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Let A_n=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-1)(3/4)^n and B_n = 1-A_n . find the least odd natural numbers n_0 , so that B_ngtA_n A for all ngen_0

If quad a_(n)=(3)/(4)-((3)/(4))^(2)+((3)/(4))^(3)+...(-1)^(n-1)((3)/(4)) and b_(n)=1-a_(n), then find the minimum natural number n,such that b_(n)>a_(n)

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

If A={4^(n)-3n-1:n in N) and B={9(n-1):n in N} then

Let s_(n)=1+(1)/(3)+(1)/(3^(2))+…+(1)/(3^(n-1)) . The least value of n in N such that (3)/(2) -S_(n) lt (1)/(400) is