Home
Class 12
MATHS
Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)...

Find the sum `1^2+(1^2+2^2)+(1^2+2^2+3^2)+` up to 22nd term.

Text Solution

Verified by Experts

The correct Answer is:
23276

`T_(n)=1^(2)+2^(2)+3^(2)+…+n^(2)`
`=(n(n+1)(2n+1))/6`
`=n/6(2n^(2)+3n+1)`
`=(2n^(3)+3n^(2)+n)/6`
`S_(n)=sumT_(n)`
`=1/6[2sumn^(3)+3sumn^(2)+sumn]`
`=1/6{2[(n(n+1))/2]^(2)+3xx(n(n+1)(2n+1))/6+(n(n+1))/2}`
`=1/6[(n^(2)(n+1)^(2))/2+(n(n+1)(2n+1))/6+(n(n+1))/2]`
`=1/6xx1/2n(n+1)[n(n+1)[n(n+1)+(2n+1)+1]`
`=(n(n+1))/12[n^(2)+3n+2]`
For n= 22
`S_(22)=(22xx23)/12[22^(2)+66+2]`
`=(22xx23)12[552]`
`=22xx23xx46`
=23276
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Find the sum 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+... up to 22 nd term.

Sum of series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+... upto 22 terms is

1^2+(1^2+2^2)+(1^2+2^2+3^2), +……….upto 22nd term is (A) 22368 (B) 23276 (C) 22376 (D) none of these

Find the sum 1+(1+2)+(1+2+2^(2))+(1+2+2^(2)+2^(3))+ …. To n terms.

Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

The sum of the series (1+2) +(1+2+2^(2))+ (1+2+2^(2)+2^(3)) +…. upto n terms is

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to