Home
Class 12
MATHS
Find the sum 11^2-1^2+12^2-2^2+13^2-3^2+...

Find the sum `11^2-1^2+12^2-2^2+13^2-3^2+……+20^2-10^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( 11^2 - 1^2 + 12^2 - 2^2 + 13^2 - 3^2 + \ldots + 20^2 - 10^2 \), we can break it down into two separate sums: 1. The sum of squares from \( 11^2 \) to \( 20^2 \) 2. The sum of squares from \( 1^2 \) to \( 10^2 \) ### Step 1: Calculate the sum of squares from \( 11^2 \) to \( 20^2 \) The sum of squares from \( n^2 \) to \( m^2 \) can be calculated using the formula: \[ \text{Sum} = \sum_{k=n}^{m} k^2 = \frac{m(m+1)(2m+1)}{6} - \frac{(n-1)n(2(n-1)+1)}{6} \] For our case, \( n = 11 \) and \( m = 20 \). Calculating \( \sum_{k=1}^{20} k^2 \): \[ \sum_{k=1}^{20} k^2 = \frac{20 \cdot 21 \cdot 41}{6} \] Calculating \( \sum_{k=1}^{10} k^2 \): \[ \sum_{k=1}^{10} k^2 = \frac{10 \cdot 11 \cdot 21}{6} \] ### Step 2: Substitute values into the formula Calculating \( \sum_{k=1}^{20} k^2 \): \[ \sum_{k=1}^{20} k^2 = \frac{20 \cdot 21 \cdot 41}{6} = \frac{17220}{6} = 2870 \] Calculating \( \sum_{k=1}^{10} k^2 \): \[ \sum_{k=1}^{10} k^2 = \frac{10 \cdot 11 \cdot 21}{6} = \frac{2310}{6} = 385 \] ### Step 3: Find the difference Now, we can find the required sum: \[ \sum_{k=11}^{20} k^2 = \sum_{k=1}^{20} k^2 - \sum_{k=1}^{10} k^2 \] Substituting the values we calculated: \[ \sum_{k=11}^{20} k^2 = 2870 - 385 = 2485 \] ### Step 4: Final calculation Now, we can find the final sum: \[ \text{Final Sum} = \sum_{k=11}^{20} k^2 - \sum_{k=1}^{10} k^2 = 2485 - 385 = 2100 \] Thus, the final answer is: \[ \boxed{2100} \]

To find the sum \( 11^2 - 1^2 + 12^2 - 2^2 + 13^2 - 3^2 + \ldots + 20^2 - 10^2 \), we can break it down into two separate sums: 1. The sum of squares from \( 11^2 \) to \( 20^2 \) 2. The sum of squares from \( 1^2 \) to \( 10^2 \) ### Step 1: Calculate the sum of squares from \( 11^2 \) to \( 20^2 \) The sum of squares from \( n^2 \) to \( m^2 \) can be calculated using the formula: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

(11^2 + 12^2 + 13^2 + …+ 20^2) = ?

Find the value of 11^(2)+12^(2)+13^(2)+...+20^(2)

Find the sum of 11 terms of -2,3,8,13…….

. Find the sum of the series 1.2+2.2^(2)+3.2^(2)+...+100.2^(100)

Given that 1^(2) + 2^(2) + 3^(2) + …. + n^(2) = (n)/(6) (n + 1) (2n + 1) , then 10^(2) + 11^(2) + 12^(2) + … + 20^(2) is equal to