Home
Class 12
MATHS
Find the sum Sigma(j=1)^(n) Sigma(i=1)^...

Find the sum `Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j`

Text Solution

Verified by Experts

The correct Answer is:
`(3n(3^n-1)(n+1))/(4)`

`sum_(j=1)^(n)sum_(i=1)^(n)ixx3^(j)=(sum_(j=1)^(n)3^(j))(sum_(i=1)^(n)i)`
`=(3+3^(2)+3^(3)+….+3^(n))xx(1+2+3+..+n)`
`(3(3^(n)-1))/(3-1)xx(n(n+1))/2`
`=(3n(3^(n)-1)(n+1))/4`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

sum_(j=1)^(n)sum_(i=1)^(n)i=

Find the sum sum_(0<=i

Find the sum sum_(0<=i

Find the sum Sigma_(r=1)^(oo)(3n^2+1)/((n^2-1)^3)

Find the sum sum_(0<=i

Find the sum sum sum_(0<=i

Find the sum sum sum_(i!=j)^(n)C_(i)^(n)C_(j)

Find the sum Sigma_(r=1)^(n) r/((r+1)!) . Also, find the sum of infinite terms.