Home
Class 12
MATHS
If x,y,in R^(+) satisfying x+y=3, then t...

If `x,y,in R^(+)` satisfying `x+y=3`, then the maximum value of `x^2y` is _____________.

Text Solution

Verified by Experts

The correct Answer is:
4

We have `(2((x)/(y))+y)/(3)ge(((x)/(2))^2y)^(1//3)`
`rArr ((3)/(3))^3ge (x^2y)/(4)`
`x^(2) 4`
Therefore, maximum value of `x^2y` is 4.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If x,y in R^(+) satisfying x+y=3, then the maximum value of x^(2)y is.

if 2x+y=1 then find the maximum value of x^(2)y

If x+y=28 , then the maximum value of x^(3)y^(4) is

If x+y=3 then show that the maximum value of x^(2) y is 4.

If y=x^(3)-3x . Find the maximum value of y.

If tan x=n tan y,n in R^(+) then the maximum value of sec^(2)(x-y) is

If x+y=4 and x>=0,y>=0 find the maximum value of x^(3)y.

Suppose x, y in R . If x^(2) + y + 4i is conjugate of -3 + x^(2) yi , then maximum possible value of (|x| + |y|)^(2) is equal to _____________.

If (x,y) lies on circle x^(2)+y^(2)=1, then maximum value of (x+y)^(2)

" If "x,y,z in R^(+)" such that "x+y+z=4" ,then maximum possible value of "xyz^(2)" is - "