Home
Class 12
MATHS
For any x,y, in R,xygt0 . Then the minim...

For any `x,y, in R,xygt0` . Then the minimum value of `(2x)/(y^3)+(x^3y)/(3)+(4y^2)/(9x^4)` is ___________.

Text Solution

Verified by Experts

The correct Answer is:
2

As x,y `in` R and `xy gt 0`, so x and y will be same sign.
Therefore, all the quantities `(2x)/(y^(3)), (x^(3) y)/(3), (4y^(2))/(9x^(4))` are positive
Now A.M `ge` G.M
`implies (2x)/(y^(3)) + (x^(3) y)/(3) + (4y^(2))/(9x^(4)) ge 3 (((2x)/(y^(3)))((x^(3) y)/(3))(4y^(2))/(9x^(4)))^(1//3)`
`= 3 xx (2)/(3) = 2`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

For any x,y in R,xy>0 then the minimum value of (2x)/(y^(3))+(x^(3)y)/(3)+(4y^(2))/(9x^(4)) euals :

For anyx ,y,in R^(+),xy>0. Then the minimum value of (2x)/(y^(3))+(x^(3)y)/(3)+(4y^(2))/(9x^(2)) is.

For any x,y varepsilon R,xy>0 then the minimum value (2x)/(y^(3))+(x^(3)y)/(3)+(4y^(2))/(9x^(4)) equals

Let 2x+3y+4z=9,x,y,z>0 then the maximum value of (1+x)^(2)(2+y)^(3)(4+z)^(4) is

If x,y in R and x^(2)+y^(2)+xy=1, then find the minimum value of x^(3)y+xy^(3)+4

If 3x+4y+z=5, where x,y,z in R, then minimum value of 26(x^(2)+y^(2)+z^(2)) is

If 4x+3y+12z=26, x, y, z, in R , then minimum possible value of x^(2)+y^(2)+z^(2) is __________

If 3x+4y=12 and 4x+3y=9 , then find the value of x+y

The minimum value of 3x+4y for x>0,y>0 such that x^(2)y^(3)=6 is