Home
Class 12
MATHS
Let a,b,c,d and e be positive real numbe...

Let a,b,c,d and e be positive real numbers such that `a+b+c+d+e=15` and `ab^2c^3d^4e^5=(120)^3xx50`. Then the value of `a^2+b^2+c^2+d^2+e^2` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Arithmetic Mean-Geometric Mean (AM-GM) inequality and the given conditions. ### Step-by-Step Solution: 1. **Given Information:** We have five positive real numbers \(a, b, c, d, e\) such that: \[ a + b + c + d + e = 15 \] and \[ ab^2c^3d^4e^5 = (120)^3 \times 50. \] 2. **Rewriting the Product:** First, we simplify the right-hand side: \[ (120)^3 = (2^3 \times 3^3 \times 5)^3 = 2^9 \times 3^9 \times 5^3, \] and \[ 50 = 2 \times 5^2. \] Therefore, \[ (120)^3 \times 50 = 2^9 \times 3^9 \times 5^3 \times (2 \times 5^2) = 2^{10} \times 3^9 \times 5^5. \] 3. **Using AM-GM Inequality:** By the AM-GM inequality, we have: \[ \frac{a + \frac{b}{2} + \frac{b}{2} + \frac{c}{3} + \frac{c}{3} + \frac{c}{3} + \frac{d}{4} + \frac{d}{4} + \frac{d}{4} + \frac{d}{4} + \frac{e}{5} + \frac{e}{5} + \frac{e}{5} + \frac{e}{5} + \frac{e}{5}}{15} \geq \sqrt[15]{ab^2c^3d^4e^5}. \] Here, we have \(15\) terms in total. 4. **Calculating the Left Side:** The left side simplifies to: \[ \frac{a + b + c + d + e}{15} = \frac{15}{15} = 1. \] 5. **Calculating the Right Side:** The right side is: \[ \sqrt[15]{ab^2c^3d^4e^5} = \sqrt[15]{2^{10} \times 3^9 \times 5^5} = 2^{\frac{10}{15}} \times 3^{\frac{9}{15}} \times 5^{\frac{5}{15}} = 2^{\frac{2}{3}} \times 3^{\frac{3}{5}} \times 5^{\frac{1}{3}}. \] 6. **Setting Up the Equality:** For the AM-GM inequality to hold with equality, all the terms must be equal: \[ a = \frac{b}{2} = \frac{c}{3} = \frac{d}{4} = \frac{e}{5} = \lambda. \] Thus, we can express \(b, c, d, e\) in terms of \(a\): \[ b = 2\lambda, \quad c = 3\lambda, \quad d = 4\lambda, \quad e = 5\lambda. \] 7. **Substituting Back:** Substituting these into the sum: \[ a + 2\lambda + 3\lambda + 4\lambda + 5\lambda = 15 \implies a + 14\lambda = 15. \] Since \(a = \lambda\), we have: \[ \lambda + 14\lambda = 15 \implies 15\lambda = 15 \implies \lambda = 1. \] Therefore, we find: \[ a = 1, \quad b = 2, \quad c = 3, \quad d = 4, \quad e = 5. \] 8. **Calculating \(a^2 + b^2 + c^2 + d^2 + e^2\):** Now we calculate: \[ a^2 + b^2 + c^2 + d^2 + e^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55. \] ### Final Answer: The value of \(a^2 + b^2 + c^2 + d^2 + e^2\) is **55**. ---

To solve the problem, we will use the Arithmetic Mean-Geometric Mean (AM-GM) inequality and the given conditions. ### Step-by-Step Solution: 1. **Given Information:** We have five positive real numbers \(a, b, c, d, e\) such that: \[ a + b + c + d + e = 15 ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d,e are positive real numbers such that,a+b+c+d+e=15 and ab^(2)c^(3)d^(4)e^(5)=(120)^(3).50 then the value of a^(2)+b^(2)+c^(2)+d^(2)+e^(2) is

If a,b,c,d,e are + ve real numbers such that a+b+c+d+e=8 and a^(2)+b^(2)+c^(2)+d^(2)+e^(2)=16 ,then the range of 'e' is

If a, b, c, d, e are positive real numbers, such that a + b +c + d + e = 8 and a^2 + b^2 + c^2 + d^2 + e^2 = 16 , find the range of e.

Let a,b,c,d,e, be real numbers such that a+b lt c+d , b+c lt d+e, c+d lt e+a, d+e lt a+b . Then

Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then the sum of all possible values of |a-d|=