Home
Class 12
MATHS
Consider the system of equations x1+x(2)...

Consider the system of equations `x_1+x_(2)^(2)+x_(3)^(3)+x_(4)^(4)+x_(5)^(5)=5` and `x_1+2x_2+3x_3+4x_4+5x_5=15` where `x_1,x_2,x_3,x_4,x_5` are positive real numbers. Then numbers of `(x_1,x_2,x_3,x_4,x_5)` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations, we have: 1. \( x_1 + x_2^2 + x_3^3 + x_4^4 + x_5^5 = 5 \) (Equation 1) 2. \( x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = 15 \) (Equation 2) where \( x_1, x_2, x_3, x_4, x_5 \) are positive real numbers. ### Step 1: Analyze the equations We know that all variables are positive real numbers. We can use the properties of inequalities to analyze the equations. ### Step 2: Apply the Cauchy-Schwarz Inequality We can apply the Cauchy-Schwarz inequality to the second equation: \[ (x_1 + x_2 + x_3 + x_4 + x_5)(1^2 + 2^2 + 3^2 + 4^2 + 5^2) \geq (x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5)^2 \] Calculating \( 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55 \). Thus, we have: \[ (x_1 + x_2 + x_3 + x_4 + x_5)(55) \geq 15^2 \] This simplifies to: \[ x_1 + x_2 + x_3 + x_4 + x_5 \geq \frac{225}{55} = \frac{45}{11} \] ### Step 3: Relate the two equations From Equation 1, we know: \[ x_1 + x_2^2 + x_3^3 + x_4^4 + x_5^5 = 5 \] Since \( x_i \) are positive, \( x_2^2, x_3^3, x_4^4, x_5^5 \) are all positive and contribute to the total of 5. ### Step 4: Use the AM-GM Inequality We can also apply the AM-GM inequality to Equation 1: \[ \frac{x_1 + x_2^2 + x_3^3 + x_4^4 + x_5^5}{5} \geq \sqrt[5]{x_1 \cdot x_2^2 \cdot x_3^3 \cdot x_4^4 \cdot x_5^5} \] This implies: \[ \frac{5}{5} \geq \sqrt[5]{x_1 \cdot x_2^2 \cdot x_3^3 \cdot x_4^4 \cdot x_5^5} \] Thus: \[ 1 \geq \sqrt[5]{x_1 \cdot x_2^2 \cdot x_3^3 \cdot x_4^4 \cdot x_5^5} \] Raising both sides to the power of 5 gives: \[ 1 \geq x_1 \cdot x_2^2 \cdot x_3^3 \cdot x_4^4 \cdot x_5^5 \] ### Step 5: Finding the values To find the number of solutions, we need to check if there are specific values of \( x_1, x_2, x_3, x_4, x_5 \) that satisfy both equations. Assume \( x_1 = x_2 = x_3 = x_4 = x_5 = k \). Then: 1. \( k + k^2 + k^3 + k^4 + k^5 = 5 \) 2. \( k + 2k + 3k + 4k + 5k = 15k = 15 \Rightarrow k = 1 \) Substituting \( k = 1 \) into the first equation: \[ 1 + 1^2 + 1^3 + 1^4 + 1^5 = 1 + 1 + 1 + 1 + 1 = 5 \] This satisfies both equations. ### Conclusion The only solution is \( (1, 1, 1, 1, 1) \). Therefore, the number of solutions \( (x_1, x_2, x_3, x_4, x_5) \) is: **1**

To solve the given system of equations, we have: 1. \( x_1 + x_2^2 + x_3^3 + x_4^4 + x_5^5 = 5 \) (Equation 1) 2. \( x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = 15 \) (Equation 2) where \( x_1, x_2, x_3, x_4, x_5 \) are positive real numbers. ### Step 1: Analyze the equations ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+... is :

(1)(x+2)(x+3)(x-4)(x-5)=44

If the mean of the scores x_(1), x_(2), x_(3), x_(4), x_(5) "and" x_(6) is x, then mean of 5x_(1), 5x_(2), 5x_(3), 5x_(4), 5x_(5), "and" 5x_(6) is ______.

((2x-5))/(3)+((5x-4))/(4)=1

2^(x+2)-2^(x+3)-2^(x+4)>5^(x+1)-5^(x+2)

The number of real solutions of the equation x^(-x^(5))+x^(4)-x^(3)+x^(2)-x+1=0 is

Solve the equation,log_(x^(2)+4x+5){log_(3x^(2)+4x+5)(x^(2)-3x)}=0