Home
Class 12
MATHS
If f(x)=lim(nrarroo)((x^(2)+ax+1)+x^(2n)...

If `f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x)` exists, then
The value of b is

A

`-1`

B

1

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=underset(nrarroo)(lim)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n))`
`={{:(x^(2)+ax+1",",|x|lt1),(2x^(2)+x+b",",|x|gt1),((-a+b+3)/(2)",",x=-1),((a+b+5)/(2)",",x=1):}`
`underset(xrarr-1)(lim)f(x)" exists if"`
`underset(xrarr -1)(lim)f(x)=underset(xrarr-1^(+))(lim)f(x)`
`rArr" "underset(xrarr-1^(-))(lim)(2x^(2)+x+b)=underset(xrarr-1^(+))(lim)(x^(2)+ax+1)`
`rArr" "2-1+b=1-a+1`
`rArr" "a+b=1" (i)"`
`underset(xrarr1)(lim)f(x)" exists if"`
`underset(xrarr1^(-))(lim)f(x)=underset(xrarr1^(+))(lim)f(x)`
`rArr" "underset(xrarr1^(-))(lim)(x^(2)+ax+1)=underset(xrarr1^(+))(lim)(2x^(2)+x+b)`
`rArr 1+a+1=2+1+b`
`rArr a-b=1" (ii)"`
`"Solving Eqs. (i) and (ii), we get a = 1 and b=0."`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a)-1 (b). 1 ( c.) 0 (d).2

f(x)=(3x^(2)+ax+a+1)/(x^(2)+x-2) and lim_(x rarr-2)f(x) exists.Then the value of (a-4) is

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

f(x)={(ax+2, x 1):} , If lim_(x rarr1)f(x) exist then value of a is :

f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)), find lim_(x rarr0)f(x)

f(x)=lim_(n rarr oo)(cos pi x-x^(2n)sin(x-1))/(1+x^(2n+1)-x^(2n)), find lim_(x rarr1)f(x)

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

If f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)) then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then