Home
Class 12
MATHS
The number of points of discontinuity of...

The number of points of discontinuity of `f(x)=[2x]^(2)-{2x}^(2)` (where [ ] denotes the greatest integer function and { } is fractional part of x) in the interval `(-2,2)`, is

A

1

B

6

C

2

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of points of discontinuity of the function \( f(x) = [2x^2] - \{2x^2\} \) in the interval \((-2, 2)\), where \([ ]\) denotes the greatest integer function and \(\{ \}\) denotes the fractional part, we can follow these steps: ### Step 1: Understand the Components of the Function The function \( f(x) \) consists of two parts: - The greatest integer function \( [2x^2] \) - The fractional part function \( \{2x^2\} \) The fractional part can be expressed as: \[ \{x\} = x - [x] \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = [2x^2] - (2x^2 - [2x^2]) = 2[x^2] - 2x^2 \] ### Step 2: Identify Points of Discontinuity The function \( f(x) \) will be discontinuous at points where \( [2x^2] \) changes its value. This occurs at points where \( 2x^2 \) is an integer. ### Step 3: Determine Where \( 2x^2 \) is an Integer Set \( 2x^2 = n \) where \( n \) is an integer. Thus: \[ x^2 = \frac{n}{2} \] This implies: \[ x = \pm \sqrt{\frac{n}{2}} \] ### Step 4: Find Integer Values of \( n \) in the Interval We need to find integer values of \( n \) such that \( x \) lies in the interval \((-2, 2)\). Calculating the bounds: - For \( x = 2 \), \( 2x^2 = 8 \) (not included) - For \( x = -2 \), \( 2x^2 = 8 \) (not included) Thus, \( n \) can take values from \( 0 \) to \( 7 \) (since \( 2x^2 < 8 \) when \( x \) is in the interval \((-2, 2)\)). ### Step 5: Calculate Possible Values of \( n \) The possible integer values of \( n \) are: - \( n = 0 \) gives \( x = 0 \) - \( n = 1 \) gives \( x = \pm \frac{1}{\sqrt{2}} \) - \( n = 2 \) gives \( x = \pm 1 \) - \( n = 3 \) gives \( x = \pm \sqrt{3} \) - \( n = 4 \) gives \( x = \pm \sqrt{2} \) - \( n = 5 \) gives \( x = \pm \sqrt{\frac{5}{2}} \) - \( n = 6 \) gives \( x = \pm \sqrt{3} \) - \( n = 7 \) gives \( x = \pm \sqrt{\frac{7}{2}} \) ### Step 6: Count the Points of Discontinuity From the above calculations, we find the following points of discontinuity in the interval \((-2, 2)\): - \( x = 0 \) - \( x = \pm \frac{1}{\sqrt{2}} \) - \( x = \pm 1 \) - \( x = \pm \sqrt{2} \) - \( x = \pm \sqrt{3} \) - \( x = \pm \sqrt{\frac{5}{2}} \) - \( x = \pm \sqrt{\frac{7}{2}} \) ### Final Count Counting these points gives us a total of **7 points of discontinuity**. ### Conclusion Thus, the number of points of discontinuity of \( f(x) \) in the interval \((-2, 2)\) is **7**. ---

To find the number of points of discontinuity of the function \( f(x) = [2x^2] - \{2x^2\} \) in the interval \((-2, 2)\), where \([ ]\) denotes the greatest integer function and \(\{ \}\) denotes the fractional part, we can follow these steps: ### Step 1: Understand the Components of the Function The function \( f(x) \) consists of two parts: - The greatest integer function \( [2x^2] \) - The fractional part function \( \{2x^2\} \) The fractional part can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

If f(x)=[2x], where [.] denotes the greatest integer function,then

Number of points of discontinuity of f(x)=[X^(2)+1) in [-2,2] is equal to[Note :[x] denotes greatest integer function ]

Number of points of discontinuity of f(x)={(x)/(5)}+{(x)/(2)} in x in[0,100] is/are (where [-] denotes greatest integer function and {:} denotes fractional part function)

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

Solve (1)/(x)+(1)/([2x])={x}+(1)/(3) where [.] denotes the greatest integers function and {.} denotes fractional part function.

Number of points of discontinuity of the function f(x)=[(6x)/(pi)]cos[(3x)/(pi)] where [y] denotes the greatest integer function less than or equal to y) in the interval [0,(pi)/(2)] is

The sum of solutions of the equation 2[x] + x =6{x} is (where [.] denotes the greatest integer function and {.} denotes fractional part function)

CENGAGE-CONTINUITY AND DIFFERENTIABILITY-Question Bank
  1. The number of points of discontinuity of f(x)=[2x]^(2)-{2x}^(2) (where...

    Text Solution

    |

  2. Let f(x) = {(x^(2)-a, if x lt 3),(bsqrt(x-2)+a, if 3 le x lt 6),(2x+b,...

    Text Solution

    |

  3. Given f(x) = {(x^(2)-5x+alpha, -ooltxle 0),(|7-3x|+sin [x], o lt x lt ...

    Text Solution

    |

  4. Let f(x) = {(sqrt(x^(2)-1), x le sqrt10),((sqrt(10x)-7), sqrt10lt xlt...

    Text Solution

    |

  5. Let f(x) = sqrt(x^(2)+px+1)/(x^(2)-p). If f(x) is discontinuous at exa...

    Text Solution

    |

  6. Number of points of non-derivability of the function f(x) = root (3)((...

    Text Solution

    |

  7. If f(x) = {(lim(x rarr oo)(6^(t)+10^(t))^(1/t), x = 0),(x^(2)+4x+C, x ...

    Text Solution

    |

  8. Number of point(s) in [1,2] where f(x) = (-2)^([x^(3)]) is non-differe...

    Text Solution

    |

  9. Consider the function f(x) = {(a^(2)+e^(x), -oo lt x lt 0),(x+2, 0le x...

    Text Solution

    |

  10. Let f(x) = [(sqrt(1+sin^(2)(x^(2))-cos^(3)(x^(2)))/(x^(3)tanx), if x n...

    Text Solution

    |

  11. Let f(x) = {(cos(x^(3)), -ooltxlt0),(sin(x^(3))-|x^(3)-1|, 0lexltoo):}...

    Text Solution

    |

  12. The sum of all values of x for which the function f(x) = sqrt(|x^(2)-5...

    Text Solution

    |

  13. Let f(x) = [(-1, -3 le x lt 0),(x-1, 0le xle 3):} and g(x) = f(|x|)+|f...

    Text Solution

    |

  14. Let f(x) be a differentiable function satisfying f((x+2y)/3)= (f(x)+2f...

    Text Solution

    |

  15. Let f(x) = {((sin alphax^(2))/x^(2), x ne 0),(3/4+1/(4alpha), x = 0):}...

    Text Solution

    |

  16. Let f(x) = {(a tan^(-1)(1/(x-4)), 0 lexlt4),(pi/2, x= 4),(btan^(-1)(2/...

    Text Solution

    |

  17. Let f(x) = {((1+ax)^(1/x), x lt 0),((root(3)(x+c)-1)/(sqrt(x+1)-1), x ...

    Text Solution

    |

  18. The number of points in (-5,5) where f(x)=[x](x^(3)-x)^(2)) is non-dif...

    Text Solution

    |

  19. If f(x) = cos (x (cos)1/x) and g(x) = (In(sec^(2)x))/(x sin x) are bot...

    Text Solution

    |

  20. Consider , f(x) = {(|(x-x^(3) 1 2),(0 2 3x^(4)),(x^(2) 4x x^(3)-3x^(5)...

    Text Solution

    |

  21. Number of points where f(x)= max {2-|x|, min {x^(2)-1}} is not differe...

    Text Solution

    |