Home
Class 12
MATHS
Let f(x) be a function defined on (-a,a)...

Let f(x) be a function defined on `(-a,a)` with a gt 0. Assume that f(x) is continuous at x = 0 and `lim_(xrarr0) (f(x)-f(kx))/(x)=alpha,` where `k in (0,1)` then

A

`f'(0^(+))=0`

B

`f'(0^(-))=(alpha)/(1-k)`

C

f(x) is defferentiable at x = 0

D

f(x) is non-differentiable at x = 0

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

`because" "underset(xrarr0)(lim)(f(x)-f(lalpha))/(x)=alpha`
`rArr" "underset(xrarr0)(lim)(f(x)-f(0)+f(0)-(kx))/(x)=alpha`
`rArr" "underset(xrarr0)(lim)((f(x)-f(0))/(x)-(f(lx)-f(0))/(x))=alpha`
`rArr" "(underset(xrarr0)(lim)(f(x)-f(0))/(x))-(underset(xrarr0)(lim)(f(kx)-f(0))/(kx))k=alpha`
`rArr" "{{:(underset(xrarr0^(-))(lim)(f(x)-f(0))/(x)-underset(xrarr0^(-))(lim)(f(kx)-f(0))/(kx)k=alpha),(underset(xrarr0^(+))(lim)(f(kx)-f(0))/(kx)-underset(xrarr0^(+))(lim)(f(kx)-f(0))/(kx).k=alpha):}`
`={{:(f'(0^(-))-kf'(0^(-))=alpha),(f'(0^(+))-kf'(0^(+))=alpha):}`
`={{:((1-k)f'(0^(-))=alpha),((1-k)f'(0^(+))=alpha):}`
`={{:(f'(0^(-))=(alpha)/(-k)),(f'(0^(+))=(alpha)/(1-k)):}`
`therefore" "f'(0)=f'(0^(-))=f'(0^(+))=(alpha)/(1-k)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Comprehension Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Solved Examples And Exercises|108 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|22 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined on (-a,a) with a>0. Assume that f(x) is continuous at x=0 and lim_(x rarr0)(f(x)-f(kx))/(x)=alpha, where k in(0,1) then f'(0^(+))=0 b.f'(0^(-))=(alpha)/(1-k) c.f(x) is differentiable at x=0 d.f(x) is non- differentiable at x=0

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f(x) is continuous at x=0, then f(0) is defined as where

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

Evaluate lim_(xrarr0) f(x) , where

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f be a function defined for every x, such that f''=-f,f(0)=0,f'(0)=1 then f(x) is equal to

IF the function f(x) defined by f(x) = x sin ""(1)/(x) for x ne 0 =K for x =0 is continuous at x=0 , then k=