Home
Class 12
MATHS
If xe^(xy)-y=sin^(2)x then (dy)/(dx) at ...

If `xe^(xy)-y=sin^(2)x` then `(dy)/(dx)` at x = 0 is

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = 0\) for the equation \(xe^{xy} - y = \sin^2 x\), we will follow these steps: ### Step 1: Differentiate both sides with respect to \(x\) We start with the equation: \[ xe^{xy} - y = \sin^2 x \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(xe^{xy}) - \frac{dy}{dx} = \frac{d}{dx}(\sin^2 x) \] ### Step 2: Apply the product rule and chain rule Using the product rule on \(xe^{xy}\): \[ \frac{d}{dx}(xe^{xy}) = e^{xy} + x \cdot e^{xy} \cdot \frac{d}{dx}(xy) \] Now, apply the chain rule to differentiate \(xy\): \[ \frac{d}{dx}(xy) = y + x \frac{dy}{dx} \] Thus, we have: \[ \frac{d}{dx}(xe^{xy}) = e^{xy} + x e^{xy} \left(y + x \frac{dy}{dx}\right) \] Now substituting this back into our differentiation gives: \[ e^{xy} + x e^{xy} \left(y + x \frac{dy}{dx}\right) - \frac{dy}{dx} = 2 \sin x \cos x \] ### Step 3: Rearranging the equation Rearranging gives: \[ e^{xy} + x e^{xy} y + x^2 e^{xy} \frac{dy}{dx} - \frac{dy}{dx} = 2 \sin x \cos x \] ### Step 4: Collect terms involving \(\frac{dy}{dx}\) Grouping the terms with \(\frac{dy}{dx}\): \[ \left(x^2 e^{xy} - 1\right) \frac{dy}{dx} = 2 \sin x \cos x - e^{xy} - x e^{xy} y \] ### Step 5: Solve for \(\frac{dy}{dx}\) Thus, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{2 \sin x \cos x - e^{xy} - x e^{xy} y}{x^2 e^{xy} - 1} \] ### Step 6: Evaluate at \(x = 0\) Now we need to find \(\frac{dy}{dx}\) at \(x = 0\). First, we need to determine \(y\) when \(x = 0\): Substituting \(x = 0\) into the original equation: \[ 0 \cdot e^{0 \cdot y} - y = \sin^2(0) \implies -y = 0 \implies y = 0 \] Now substituting \(x = 0\) and \(y = 0\) into \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{2 \sin(0) \cos(0) - e^{0} - 0 \cdot e^{0} \cdot 0}{0^2 e^{0} - 1} \] This simplifies to: \[ \frac{dy}{dx} = \frac{0 - 1 - 0}{0 - 1} = \frac{-1}{-1} = 1 \] ### Final Answer Thus, \(\frac{dy}{dx}\) at \(x = 0\) is: \[ \boxed{1} \]

To find \(\frac{dy}{dx}\) at \(x = 0\) for the equation \(xe^{xy} - y = \sin^2 x\), we will follow these steps: ### Step 1: Differentiate both sides with respect to \(x\) We start with the equation: \[ xe^{xy} - y = \sin^2 x \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos

Similar Questions

Explore conceptually related problems

If xe^(xy)=y+sin^(2)x then at x=0(dy)/(dx)=

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y=xe^(xy) , then (dy)/(dx) =

If sin^(2)x+2cos y+xy=0 then (dy)/(dx)=

If ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =

If e^(x-y)+log xy+xy=0, then (dy)/(dx) is

If xy(x+y)=k," then: "x(x+2y)(dy)/(dx)=

If y=y(x) and it follows the relation 4xe^(xy)=y+5sin^(2)x, then y'(0) is equal to

CENGAGE-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. The right hand derivative of f(x)=[x]t a npix a tx=7 is (where [.] den...

    Text Solution

    |

  2. If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x...

    Text Solution

    |

  3. If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

    Text Solution

    |

  4. Let f, g and h are differentiable functions. If f(0) = 1; g(0) = 2; ...

    Text Solution

    |

  5. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  6. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  7. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  8. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  9. If f(x)=log(e)(log(e)x)/log(e)x, then f'(x) at x = e is

    Text Solution

    |

  10. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  11. (d)/(dx)[cos^(-1)(xsqrtx-sqrt((1-x)(1-x^(2))))]=

    Text Solution

    |

  12. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  13. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  14. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  15. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  16. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  17. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  18. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  19. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  20. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |