Home
Class 12
MATHS
Let f, g and h are differentiable funct...

Let `f, g and h` are differentiable functions. If `f(0) = 1; g(0) = 2; h(0) = 3` and the derivatives of theirpair wise products at `x=0` are `(fg)'(0)=6;(g h)' (0) = 4 and (h f)' (0)=5` then compute the value of `(fgh)'(0)`.

A

2

B

4

C

8

D

16

Text Solution

Verified by Experts

The correct Answer is:
C

`y=fgh`
`(dy)/(dx)=f'gh+fg'h+fgh'`
`=(1)/(2)(2f'gh+2fg'h+2fgh')`
`=(1)/(2)(h(f'g+g'f)+g(f'h+fh')+f(g'h+gh'))`
`=(1)/(2)[h.(fg)'+g.(fh)'+f.(gh)']`
`therefore" "(fgh)'(0)=(1)/(2)[h(0)(fg)'(0)+g(0)(fh)'(0)+f(0)(gh)'(0)]`
`=(1)/(2)(3xx6+2xx5+1xx4)`
`=(1)/(2)(18+10+4)=(32)/(2)=16`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos

Similar Questions

Explore conceptually related problems

Let f,g and h are differentiable functions.If f(0)=1;g(0)=2;h(0)=3 and the derivatives of theirpair wise products at x=0 are (fg)'(0)=6;(gh)'(0)=4 and (hf)'(0)=5 then compute the value of (fgh)'(0)

Let f and g be differentiable on R and suppose f(0)=g(0) and f'(x) =0. Then show that f(x) =0

If f(x) and g(x) ar edifferentiable function for 0lex le1 such that f(0)=2,g(0) = 0,f(1)=6,g(1)=2 , then in the interval (0,1)

f(x) and g(x) are differentiable functions for 0 <= x <= 2 such that f(0) = 5, g(0) = 0, f(2)= 8,g(2) = 1. Show that there exists a number c satisfying 0 < c < 2 and f'(c)=3 g'(c).

Let f(x)=e^(x)g(x),g(0)=4 and g'(0)=2, then f'(0) equals

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

Let x=f(t) and y=g(t), where x and y are twice differentiable function. If f'(0)= g'(0) =f''(0) = 2. g''(0) = 6, then the value of ((d^(2)y)/(dx^(2)))_(t=0) is equal to

CENGAGE-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x...

    Text Solution

    |

  2. If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

    Text Solution

    |

  3. Let f, g and h are differentiable functions. If f(0) = 1; g(0) = 2; ...

    Text Solution

    |

  4. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  5. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  6. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  7. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  8. If f(x)=log(e)(log(e)x)/log(e)x, then f'(x) at x = e is

    Text Solution

    |

  9. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  10. (d)/(dx)[cos^(-1)(xsqrtx-sqrt((1-x)(1-x^(2))))]=

    Text Solution

    |

  11. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  12. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  13. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  14. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  15. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  16. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  17. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  18. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  19. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  20. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |