Home
Class 12
MATHS
The derivative of cos(2tan^(-1)sqrt((1-x...

The derivative of `cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/(2)))` w.r.t. x is

A

`1-(1)/(sqrt(1-x^(2)))`

B

`1-(1)/(sqrt(1+x^(2)))`

C

`2-(1)/(sqrt(1-x^(2)))`

D

`2-(1)/(sqrt(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the expression \( y = \cos(2 \tan^{-1}(\sqrt{\frac{1-x}{1+x}})) - 2 \cos^{-1}(\sqrt{\frac{1-x}{2}}) \) with respect to \( x \), we will follow these steps: ### Step 1: Substitute \( x \) Let \( x = \cos(\theta) \). Then we can express \( \frac{1-x}{1+x} \) in terms of \( \theta \): \[ \frac{1 - \cos(\theta)}{1 + \cos(\theta)} = \frac{2 \sin^2(\theta/2)}{2 \cos^2(\theta/2)} = \tan^2(\theta/2) \] Thus, we have: \[ \tan^{-1}(\sqrt{\frac{1-x}{1+x}}) = \tan^{-1}(\tan(\theta/2)) = \frac{\theta}{2} \] ### Step 2: Simplify the expression for \( y \) Now substituting back into \( y \): \[ y = \cos(2 \cdot \frac{\theta}{2}) - 2 \cos^{-1}(\sqrt{\frac{1 - \cos(\theta)}{2}}) \] Using the double angle identity for cosine: \[ y = \cos(\theta) - 2 \cos^{-1}(\sin(\theta/2)) \] ### Step 3: Rewrite \( \cos^{-1} \) Using the identity \( \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \): \[ y = \cos(\theta) - 2 \left( \frac{\pi}{2} - \sin^{-1}(\sin(\theta/2)) \right) \] This simplifies to: \[ y = \cos(\theta) - \pi + 2 \cdot \frac{\theta}{2} = \cos(\theta) - \pi + \theta \] ### Step 4: Differentiate \( y \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\cos(\theta) - \pi + \theta) \] Using the chain rule: \[ \frac{dy}{dx} = -\sin(\theta) \cdot \frac{d\theta}{dx} + \frac{d\theta}{dx} \] We know that: \[ \frac{d\theta}{dx} = -\frac{1}{\sqrt{1 - x^2}} \] Thus: \[ \frac{dy}{dx} = -\sin(\theta) \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) + \left(-\frac{1}{\sqrt{1 - x^2}}\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{\sin(\theta) - 1}{\sqrt{1 - x^2}} \] ### Step 5: Substitute back \( \sin(\theta) \) Since \( x = \cos(\theta) \), we can find \( \sin(\theta) \) using: \[ \sin(\theta) = \sqrt{1 - x^2} \] Thus: \[ \frac{dy}{dx} = \frac{\sqrt{1 - x^2} - 1}{\sqrt{1 - x^2}} \] ### Final Answer The derivative of the given expression is: \[ \frac{dy}{dx} = 1 - \frac{1}{\sqrt{1 - x^2}} \]

To find the derivative of the expression \( y = \cos(2 \tan^{-1}(\sqrt{\frac{1-x}{1+x}})) - 2 \cos^{-1}(\sqrt{\frac{1-x}{2}}) \) with respect to \( x \), we will follow these steps: ### Step 1: Substitute \( x \) Let \( x = \cos(\theta) \). Then we can express \( \frac{1-x}{1+x} \) in terms of \( \theta \): \[ \frac{1 - \cos(\theta)}{1 + \cos(\theta)} = \frac{2 \sin^2(\theta/2)}{2 \cos^2(\theta/2)} = \tan^2(\theta/2) \] Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos

Similar Questions

Explore conceptually related problems

Derivative of tan^(-1)sqrt((1-x)/(1+x))=w.r.t.cos^(-1)x is

tan^(-1)(sqrt((a-x)/(a+x)))=(1)/(2)cos^(-1)((x)/(a))

The derivative of cos^(-1)((1-x^2)/(1+x^2)) w.r.t. cot^(-1)((1-3x^2)/(3x-x^3)) .

The derivative of 2cos^(-1)x w.r.t 2x^(2)-1 is

Derivative of cos^(-1)sqrt(x)w.r.t.sqrt(1-x) is

The derivative of tan^(-1) ((2x)/(1-x^(2))) with respect to cos^(-1) sqrt(1 - x^(2)) is

cos^(-1)((1-x^(2))/(1+x^(2)))w.r.t. tan^(-1)x

Differentiate tan^(-1)(x)/(1+sqrt((1-x^(2))))+{2tan^(-1)sqrt(((1-x)/(1+x)))}sin w.r.t.x

The derivative of sin^(-1)((x)/(sqrt(1-x^(2)))) w.r.t cos^(-1)((1-x^(2))/(1+x^(2))),(x>0) is

CENGAGE-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. Let f, g and h are differentiable functions. If f(0) = 1; g(0) = 2; ...

    Text Solution

    |

  2. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  3. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  4. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  5. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  6. If f(x)=log(e)(log(e)x)/log(e)x, then f'(x) at x = e is

    Text Solution

    |

  7. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  8. (d)/(dx)[cos^(-1)(xsqrtx-sqrt((1-x)(1-x^(2))))]=

    Text Solution

    |

  9. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  10. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  11. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  12. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  13. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  14. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  15. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  16. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  17. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  18. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  19. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  20. The second derivative of a single valued function parametrically repre...

    Text Solution

    |