Home
Class 12
MATHS
For the curve sinx+siny=1 lying in first...

For the curve `sinx+siny=1` lying in first quadrant. If `lim_(xrarr0) x^(alpha)(d^(2)y)/(dx^(2))` exists and non-zero than `2alpha=`

A

3

B

4

C

5

D

1

Text Solution

Verified by Experts

The correct Answer is:
A

`sinx+siny=1`
`rArr" "cosx+cosy y'=0`
`rArr" "-sinx+cosy y''+(y')(-siny)=0`
`rArr" "y''=(y'siny+sinx)/(cosy)`
`=((-(cosx)/(cosy))^(2)siny+sinx)/(cosy)`
`=(sinxcos^(2)y+cos^(2)xsiny)/(cos^(3)y)`
Putting `sin x=t, sin y=1-t`, we get
`y''=(t^(-3//2)(1-t+t^(2)))/((2-t)^(3//2))`
`rArr" "alpha=(3)/(2)`
`rArr" "2alpha=3`
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(sin (pisin^(2)x))/(x^(2))=

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0)(sinx)^(2tanx)

For the curve sin x + si y=1 lying in the first quadrant there exist a constant a for which lim _(x to 0) x ^(a) (d^(2)y)/(dx ^(2)) =L (not zero), then 2 alpha=

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr0) (6^(x)-3x^(2)-2^(x)+1)/(x^(2))=?

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

CENGAGE-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  2. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  3. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  4. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  5. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  6. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  7. (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  8. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  9. x= 2 cos t -cos 2t ,y=2 sin t-sin 2t

    Text Solution

    |

  10. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/d= y b. y/3 c. y/...

    Text Solution

    |

  11. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  12. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  13. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  14. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  15. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  16. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  17. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  18. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |

  19. Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously dif...

    Text Solution

    |

  20. A nonzero polynomial with real coefficient has the property that f(x)=...

    Text Solution

    |