Home
Class 12
MATHS
If x in (0,pi//2), then the function f(x...

If `x in (0,pi//2)`, then the function `f(x)= x sin x +cosx +cos^(2)x` is

A

increasing

B

Decreasing

C

Neither increasing nor decreasing

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = x \sin x + \cos x + \cos^2 x \) is increasing or decreasing on the interval \( (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(x \sin x) + \frac{d}{dx}(\cos x) + \frac{d}{dx}(\cos^2 x) \] Using the product rule for \( x \sin x \) and the chain rule for \( \cos^2 x \): \[ f'(x) = \sin x + x \cos x - \sin x - 2 \cos x \sin x \] ### Step 2: Simplify the derivative Now we simplify the expression for \( f'(x) \): \[ f'(x) = \sin x + x \cos x - \sin x - 2 \cos x \sin x \] \[ f'(x) = x \cos x - 2 \cos x \sin x \] \[ f'(x) = \cos x (x - 2 \sin x) \] ### Step 3: Analyze the sign of the derivative Next, we need to analyze the sign of \( f'(x) \) on the interval \( (0, \frac{\pi}{2}) \). We need to check when \( f'(x) < 0 \): \[ f'(x) < 0 \implies \cos x (x - 2 \sin x) < 0 \] Since \( \cos x > 0 \) in the interval \( (0, \frac{\pi}{2}) \), we focus on the term \( (x - 2 \sin x) \): \[ x - 2 \sin x < 0 \implies x < 2 \sin x \] ### Step 4: Show that \( x < 2 \sin x \) To show that \( x < 2 \sin x \) for \( x \in (0, \frac{\pi}{2}) \), we can analyze the function \( g(x) = 2 \sin x - x \). 1. At \( x = 0 \): \[ g(0) = 2 \sin(0) - 0 = 0 \] 2. The derivative \( g'(x) = 2 \cos x - 1 \). - \( g'(x) > 0 \) when \( \cos x > \frac{1}{2} \) (which is true for \( x < \frac{\pi}{3} \)). - \( g'(x) < 0 \) when \( \cos x < \frac{1}{2} \) (which is true for \( x > \frac{\pi}{3} \)). 3. Therefore, \( g(x) \) increases on \( (0, \frac{\pi}{3}) \) and decreases on \( (\frac{\pi}{3}, \frac{\pi}{2}) \). 4. Since \( g(0) = 0 \) and \( g(x) \) is increasing initially, \( g(x) > 0 \) for \( x \in (0, \frac{\pi}{2}) \). Thus, \( x < 2 \sin x \) holds true for \( x \in (0, \frac{\pi}{2}) \). ### Step 5: Conclusion Since \( f'(x) < 0 \) for \( x \in (0, \frac{\pi}{2}) \), the function \( f(x) \) is decreasing on this interval. Therefore, the function \( f(x) = x \sin x + \cos x + \cos^2 x \) is **decreasing** on \( (0, \frac{\pi}{2}) \). ---

To determine whether the function \( f(x) = x \sin x + \cos x + \cos^2 x \) is increasing or decreasing on the interval \( (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(x \sin x) + \frac{d}{dx}(\cos x) + \frac{d}{dx}(\cos^2 x) \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

In the interval (0, (pi)/(2)) the function f (x) = cos ^(2) x is :

Define f(0) such that the function f(x)=(cos(sin x)-cos x)/(x^(2)),x!=0, is continuous at x=0

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

Ther period of the function f(x) =(|sin x|-|cosx|)/(|sin x + cos x|) is

The interval in which the function f(x)=sin x+cos x in x in[0,2 pi] is

The maximum value of the function f(x)=x sin x+cos x-(x^(2))/(4) for x in[-(pi)/(2),(pi)/(2)] is

Find the intervals in which the function f given by f(x)=(4sin x-2x-x cos x)/(2+cos x) is increasing decreasing,x in(0,2 pi)

Verify Rolles theorem for function f(x)=sin x+cos x on [0,pi/2]

If [2cos x]+[sin x]=-3, then the range of the function,f(x)=sin x+sqrt(3)cos x in [0,2 pi] (where [1 denotes greatest integer function)