Home
Class 12
MATHS
if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 mo...

if f(x) `=2e^(x) -ae^(-x) +(2a +1) x-3` monotonically increases for `AA x in R` then the minimum value of 'a' is

A

2

B

1

C

0

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C

`f'(x)=2e^(x)+ke^(-x)(2k+1)`
`=2e^(x)+(k)/(e^(x))+(2k+1)`
`=(2(e^(x))^(2)+k(2k+1)e^(x))/(e^(x))`
Now f(x) is monotonically increasing.
`rArr" "f'(x)le0" i.e., "2y^(2)+(2k+1)y+kle0`
where `y=e^(x)`
`therefore" "2y^(2)(2k+1)y+k le 0` for all positive value of y.
For the `k le0`.
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2e^(x)-ae^(-x)+(2a+1)x-3 monotonically increases for AA x in R, then find range of values of a

Let f(x) =x - tan^(-1)x. Prove that f(x) is monotonically increasing for x in R

If f(x)=2e^(x)-c ln x monotonically increases for every x in(0,oo), then the true set of values of c is

Let set of all possible values of lamda such that f (x)= e ^(2x) - (lamda+1) e ^(x) +2x is monotonically increasing for AA x in R is (-oo, k]. Find the value of k.

If f(x) = x^(3) + (a – 1) x^(2) + 2x + 1 is strictly monotonically increasing for every x in R then find the range of values of ‘a’

The function f(x)= (x^(2))/(e^(x)) monotonically increasing if

If a le 0 f(x) =e^(ax)+e^(-ax) and S={x:f(x) is monotonically increasing then S equals

Let f(x)=max{|sin x|,|cos x|}AA x in R then minimum value of f(x) is

If f(x)=((a^(2)-1)/(3))x^(3)+(a-1)x^(2)+2x+1 is monotonically increasing for every x in R then a can lie in