Home
Class 12
MATHS
If x(1),x(2) in (0,(pi)/(2)), then (tan(...

If `x_(1),x_(2) in (0,(pi)/(2))`, then `(tan_(x_(2)))/(tanx_(1))` is (where `x_(1)lt x_(2)`)

A

`lt (x_(1))/(x_(2))`

B

`=(x_(1))/(x_(2))`

C

`ltx_(1) x_(2)`

D

`gt(x_(2))/(x_(1))`

Text Solution

Verified by Experts

The correct Answer is:
D

For `x_(1),x_(2) in (0,(pi)/(2))`, we know `(x)/(tanx)` is decreasing function
`therefore" for "x_(1)lt x_(2) rArr (x_(1))/(tanx_(1))gt (x_(2))/(tanx_(2))`
`rArr" "(tanx_(2))/(tanx_(1))gt (x_(2))/(x_(1))`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

For 0

If x_(1)+x_(2)=(pi)/(2) and x_(2)+x_(3)=x_(1), then tan x_(1)=tan x_(2)+lambda tan x_(3) where lambda is equal to

If x_(1)=2tan^(-1)((1+x)/(1-x)),x_(2)=sin^(-1)((1-x^(2))/(1+x^(2))) where x in(0,1), then x_(1)+x_(2) is equal to 0 (b) 2 pi(c)pi pi(d) none of these

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then x_(1) + x_(2) is equal to

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

For x in (0,(pi)/(2)) prove that "sin"^(2) x lt x^(2) lt " tan"^(2) x

Prove the inequality arc tan x_(2) -arc tan x_(1) lt x_(2) -x_(1) where x_(2) gt x_(1)