Home
Class 12
MATHS
If f(x) is a differentiable real valued ...

If f(x) is a differentiable real valued function satisfying `f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1,` then `f(x)+x AA x gt 0` is

A

decreasing function of x

B

increasing function of x

C

constant function

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Given `f''(x)-3f'(x)gt3`
`rArr" "(d)/(dx)(e^(-3x)f'(x))gt 3e^(-3x)`
`rArr" "(d)/(dx)(e^(-3x)f'(x)+e^(-3x))gt0`
`rArr" "e^(-3x)(f'(x)+1)` is increasing funcion
Also `e^(-3x)(f'(x)+1)gt f'(0)+1 AA x gt 0`
`rArr" "f'(x)+1gt0`
`rArr" "f(x)+x` is an increasing function.
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [0, 4] and f(0)=0 , then

Let f be a differentiable function satisfying f'(x)=f' (-x) AA x in R. Then

If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, 4] and f(0)=0 , then

Let f(x) be a differentiable function satisfying f(y)f((x)/(y))=f(x)AA,x,y in R,y!=0 and f(1)!=0,f'(1)=3 then

If f(x) is a differentiable real valued function such that f(0)=0 and f\'(x)+2f(x) le 1 , then (A) f(x) gt 1/2 (B) f(x) ge 0 (C) f(x) le 1/2 (D) none of these

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If f is a differentiable function satisfying 2f(x)=f(xy)+f((x)/(y)),AA x,y in R^(+), f(1)=0 and f'(1)=(1)/(ln6), then f(7776) =

If f'(x) gt f(x)" for all "x ge 1 and f(1)=0 , then

Let a real valued function f satisfy f(x+y)=f(x)f(y)AA x,y in R and f(0)!=0 Then g(x)=(f(x))/(1+[f(x)]^(2)) is