Home
Class 12
MATHS
If sinx+xge|k|x^(2), AA x in [0,(pi)/(2)...

If `sinx+xge|k|x^(2), AA x in [0,(pi)/(2)]`, then the greatest value of k is

A

`(-2(2+pi))/(pi^(2))`

B

`(2(2+pi))/(pi^(2))`

C

can't be determined finitely

D

zero

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=sinx+x,`
`rArr" "f'(x)=cos x+1 gt 0`
`rArr" "f(x)` is increasing function
Also `f''(x)=-sinx lt0`
`therefore" f is concave downward for " x in [0,(pi)/(2)]`
Now `g(x)=|k|x^(2)` is concave upward and increasing
So, if `g((pi)/(2))le f((pi)/(2))`, then `f(x)geg(x)`
`rArr" "1+(pi)/(2)ge|k|(pi^(2))/(4)`
`rArr" "k=[(-(2pi+4))/(pi^(2)),((2pi+4))/(pi^(2))]`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(k)(dx)/(2+18x^(2))=(pi)/(24) , then the value of k is

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

If the area bounded by y=x, y=sinx and x=(pi)/(2) is ((pi^(2))/(k)-1) sq. units then the value of k is equal to

The sum of the roots of the equation |sqrt3cos x-sinx|=2" in "[0, 4pi] is kpi , then the value of 6k is

For f(x)=(k cos x)/(pi-2x), if x!=(pi)/(2),3, if x=(pi)/(2) then find the value of k so that f is continous at x=(pi)/(2)

If int_(0) ^(k) (dx)/(2+18 x^(2))=(pi)/(24), then the value of k is

If x_i gt 0 for 1leilen and x_1+x_2+x_3+…+x_n=pi then the greatest value of the sum sinx_1+sinx_2+sinx_3+…+sin_n=… (A) n (B) pi (C) nsin\ pi/n (D) none of these

If minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is (pi^(2))/(k), then value of k is