Home
Class 12
MATHS
Let f(x)=(x^(2)+2)/([x]),1 le x le3, whe...

Let `f(x)=(x^(2)+2)/([x]),1 le x le3`, where [.] is the greatest integer function. Then the least value of f(x) is

A

2

B

3

C

`3//2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)={{:(x^(2)+2",",1lexlt2),((x^(2)+2)/(2)",",2lexlt3),((x^(2)+2)/(3),x=3):}`
`therefore" Least value of f(x) in " [1,2]" is "3`
`" Least value of f(x) in "[2,3]" is "3`
`f(3)=(11)/(3)`
`therefore" Least value of f(x) is 3"`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)={1+|x|,x<-1[x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2,3)}dot

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f[-3,3]rarr R where f(x)=x^(3)+sin x+[(x^(2)+2)/(a)], be an odd function (where [.] represents greatest integer function).Then the value of a is

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

Let f(x)=|x|+[x-1], where [ . ] is greatest integer function , then f(x) is