Home
Class 12
MATHS
If lim(xrarra) f(x)=lim(xrarra) [f(x)] (...

If `lim_(xrarra) f(x)=lim_(xrarra) [f(x)]` ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

A

`underset(xrarra)(lim)` f(x) is an integer

B

`underset(xrarra)(lim)` f(x) is non-integer

C

f(x) has local maximum at x = a

D

f(x) has local minimum at x = a

Text Solution

Verified by Experts

The correct Answer is:
A, D

We have `underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)]`.
The can occur only when `underset(xrarra)(lim)f(x)` is an integer.
`rArr" "f(a^(+))gt f(a) and f(a^(-))gt f(a)`
`rArr" "x = a` must be point of local minima.
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

If lim_(x rarr a)f(x)=lim_(x rarr a)[f(x)]([.] denotes the greatest integer function) and f(x) is non- constantcontinuous function,then:

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

f(x)=lim_(nrarroo)cos^(2n)(pix^(2))+[x] (where, [.] denotes the greatest integer function and n in N ) is

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

The function f(x)=[x], where [x] denotes the greatest integer function,is continuous at

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

The function f(x)=lim_(nrarroo)cos^(2n)(pix)+[x] is (where, [.] denotes the greatest integer function and n in N )

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If lim_(x to a) f(x)=lim_(x to a) [f(x)] and f(x) is non-constant continuous function, where [.] denotes the greatest integer function, then