Home
Class 12
MATHS
If ab=2a+3b, agt0, b gt0, then the minim...

If `ab=2a+3b, agt0, b gt0`, then the minimum value of ab is

A

12

B

24

C

`(1)/(4)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`ab=2a+3b rArr b=(2a)/(a-3)`
Now `z=ab=(2a^(2))/(a-3)`
`rArr" "(dz)/(da)=(2[(a-3)2a-a^(2)])/((a-3)^(2))=(2[a^(2)-6a])/((a-3)^(2))`
Put `(dz)/(da)=0, therefore a^(2)-6a=0, a=0,6`
Clearly a = 6 is point of minima
when `a=6, b=4 rArr (ab)_("min")=6xx4=24`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

If ab=25 , then the minimum value of a+b is :

If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)), is

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

If ab gt 0 , then the minimum value of (a+b)((1)/(a)+(1)/(b)) is

If agt0,bgt0 and the minimum value of a sin^(2)theta+b cosec^(2)theta is equal to maximum value of a sin^(2)theta+b cos^(2)theta, then (a)/(b) is equal to

If agt0,Bgt0 and A+B=pi/4 , then the minimum value of tanA+tanB is

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(2)c^(2) is