Home
Class 12
MATHS
If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/...

If `int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x-1)))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C,` then

A

`u=e^(x)+e^(-x)`

B

`u=e^(x)-e^(-x)`

C

`t=e^(x)+e^(-x)`

D

`t=e^(x)-e^(-x)`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`I=int{(e^(2x)-e^(-2x))ln(e^(x)+e^(-x))-(e^(2x)-e^(-2x))ln(e^(x)-e^(-x))}dx`
`=int tln t dt- int u ln u du ("where t"=e^(x)+e^(-x) and u=e^(x)-e^(-x))`
`=(t^(2))/(2)ln t-(t^(2))/(4)-(u^(2))/(2)ln u+(u^(2))/(4)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(e^(4x)-1)/(e^(2x))dx

int(e^(2x)+1)/(e^(2x)-1)dx=

"int(e^(x)-2)/(e^(2x)+4)dx

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

int (e^(2x)-1)/(e^(2x)+1) dx=?

" (2) "int(e^(x)dx)/(e^(2x)+4)

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=