Home
Class 12
MATHS
If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/...

If `int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x-1)))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C,` then

A

`u=e^(x)+e^(-x)`

B

`u=e^(x)-e^(-x)`

C

`t=e^(x)+e^(-x)`

D

`t=e^(x)-e^(-x)`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`I=int{(e^(2x)-e^(-2x))ln(e^(x)+e^(-x))-(e^(2x)-e^(-2x))ln(e^(x)-e^(-x))}dx`
`=int tln t dt- int u ln u du ("where t"=e^(x)+e^(-x) and u=e^(x)-e^(-x))`
`=(t^(2))/(2)ln t-(t^(2))/(4)-(u^(2))/(2)ln u+(u^(2))/(4)+C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(e^(4x)-1)/(e^(2x))dx

"int(e^(x)-2)/(e^(2x)+4)dx

Knowledge Check

  • If int(e^(4x)-1)/(e^(2)x)log((e^(2x)+1)/(e^(2x)-1))dx (t^(2))/(2)logt-(t^(2))/(4)+(u^(2))/(4)+C them

    A
    `t=e^(-x)-e^(x)u=e^(x)+e^(-x)`
    B
    `t=e^(x)-e^(-x),u=e^(x)+e^(-x)`
    C
    `t=e^(x)+e^(-x),u=e^(x)-e^(-x)`
    D
    none of these
  • int(e^(2x)+1)/(e^(2x)-1)dx=

    A
    `log(e^(x)-e^(-x))+alpha`
    B
    `log(e^(x)+e^(-x))+beta`
    C
    `log(e^(2x)-1)+x+gamma`
    D
    `log(e^(2x)-1)+delta`
  • If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x)-1))dx=t^2/2logt-t^2/4-u^2/2logu+u^2/4+C , then

    A
    `t=u=e^x+e^(x)`
    B
    `t=e^x-e^(-x),u=e^x-e^(-x)`
    C
    `t=e^x+e^(-x),u=e^x-e^(-x)`
    D
    None of the above
  • Similar Questions

    Explore conceptually related problems

    int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

    int (e^(2x)-1)/(e^(2x)+1) dx=?

    " (2) "int(e^(x)dx)/(e^(2x)+4)

    If int(e^(4x)-1)/(e^(2x))log((e^(2x+1))/(e^(2x-1)))dx=(u^2/2logu-u^2/4)-(v^2/2logv-v^2/4) then

    int_(0)^(log 2)(e^(x))/(1+e^(x))dx=