Home
Class 12
MATHS
For 0<x1<x2<pi/2, prove that (x2)/(x1)<(...

For `0

Text Solution

Verified by Experts

we have to prove that
`(x_(2))/(x_(1))lt(tanx_(2))/(tanx_(1)) or (tanx_(1))/(tanx_(1))lt(tanfx_(2))/(x_(2))`
Now consider ` f(x)=(tanx)/(x)`
Now consider f(x)=`(tanx)/(x)`
`therefore f(x) =(xsec^(2)x-tanx)/(x^(2))`
`=sec^(2)x(x-sin2x)/(2x^(2)cos^(2)x)`
Now `x in (0,pi//2)`
or `f(x_(1))ltf(x_(2))`
or `(tanx_(1))/(x_(1)) lt(tanx_(2))/(x_(2))`
or `(x_(2))/(x_(1))lt(tanx_(2))/(tan x_(1))`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.4|16 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.1|10 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

" if " f(0) = |{:(sin 0 ,,cos 0,,sin 0),(cos0,,sin0,,cos0),(cos0,, sin 0,,sin 0):}| then

The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

Find the co- ordinates of the centroid of the tetrahedron whose vertices are (0,0,0) ,(a,0,0),(0,b,0) and (0,0,c)

The truth table for the following combination of gates is (a) {:(A,B,Y),(0,0,0),(0,1,0),(1,0,1),(1,1,1):} (b) {:(A,B,Y),(0,0,0),(0,1,0),(1,0,0),(1,1,1):} (c) {:(A,B,Y),(0,0,1),(0,1,1),(1,0,1),(1,1,0):} (d) {:(A,B,Y),(0,0,0),(0,1,1),(1,0,1),(1,1,10):}

If A = [{:( 0,0,0),(0,0,0) ,(0,1,0):}] ,then A is

If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these

If A=[[a, 0, 0], [0, a, 0], [0, 0, a]] , then |adjA|=

If A=[[a, 0, 0], [0, a, 0], [0, 0, a]] , then |A||adjA|=

If A=[[a,0,0] , [0,a,0] , [0,0,a]] then |adj A|=

Compute [(a,0),(a,0)][(0,0),(0,0)] .