Home
Class 12
MATHS
consider f(X)= cos2x+2xlambda^(2)+(2lamb...

consider f(X)= `cos2x+2xlambda^(2)+(2lambda+1)(lambda-1)x^(2),lambda in R`
If `alpha ne beta and f(alpha+beta)/(2)lt(f(alpha)+f(beta))/(2)` for `alpha` and `beta` then find the values of `lambda`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given and apply the condition provided. Let's break it down step by step. ### Step 1: Define the function We are given the function: \[ f(x) = \cos(2x) + 2x\lambda^2 + (2\lambda + 1)(\lambda - 1)x^2 \] ### Step 2: Find the second derivative To determine the concavity of the function, we need to compute the second derivative \( f''(x) \). 1. **First derivative \( f'(x) \)**: \[ f'(x) = -2\sin(2x) + 2\lambda^2 + 2(2\lambda + 1)(\lambda - 1)x \] 2. **Second derivative \( f''(x) \)**: \[ f''(x) = -4\cos(2x) + 2(2\lambda + 1)(\lambda - 1) \] ### Step 3: Set the condition for concavity According to the problem, we have the condition: \[ f\left(\frac{\alpha + \beta}{2}\right) < \frac{f(\alpha) + f(\beta)}{2} \] This implies that the function is concave down at the points \( \alpha \) and \( \beta \). For this to hold for all \( x \in \mathbb{R} \), we require: \[ f''(x) \geq 0 \] Thus, we need: \[ -4\cos(2x) + 2(2\lambda + 1)(\lambda - 1) \geq 0 \] ### Step 4: Analyze the inequality Since \( \cos(2x) \) oscillates between -1 and 1, we can find the maximum and minimum values of \( -4\cos(2x) \): - Maximum: \( -4(-1) = 4 \) - Minimum: \( -4(1) = -4 \) Thus, we want: \[ 2(2\lambda + 1)(\lambda - 1) \geq 4 \quad \text{and} \quad 2(2\lambda + 1)(\lambda - 1) \geq -4 \] ### Step 5: Solve the inequalities 1. **First inequality**: \[ 2(2\lambda + 1)(\lambda - 1) \geq 4 \implies (2\lambda + 1)(\lambda - 1) \geq 2 \] Expanding this: \[ 2\lambda^2 - 2\lambda + \lambda - 1 \geq 2 \implies 2\lambda^2 - \lambda - 3 \geq 0 \] Factoring gives: \[ (2\lambda + 3)(\lambda - 1) \geq 0 \] The critical points are \( \lambda = -\frac{3}{2} \) and \( \lambda = 1 \). 2. **Second inequality**: \[ 2(2\lambda + 1)(\lambda - 1) \geq -4 \implies (2\lambda + 1)(\lambda - 1) \geq -2 \] Expanding this: \[ 2\lambda^2 - 2\lambda + \lambda - 1 \geq -2 \implies 2\lambda^2 - \lambda + 1 \geq 0 \] This quadratic has no real roots (discriminant < 0), hence it is always positive. ### Step 6: Combine the results From the first inequality, we analyze the intervals: - \( \lambda \leq -\frac{3}{2} \) or \( \lambda \geq 1 \) Thus, the values of \( \lambda \) that satisfy the conditions are: \[ \lambda \in (-\infty, -\frac{3}{2}] \cup [1, \infty) \] ### Final Answer The values of \( \lambda \) are: \[ \lambda \in (-\infty, -\frac{3}{2}] \cup [1, \infty) \]

To solve the problem, we need to analyze the function given and apply the condition provided. Let's break it down step by step. ### Step 1: Define the function We are given the function: \[ f(x) = \cos(2x) + 2x\lambda^2 + (2\lambda + 1)(\lambda - 1)x^2 \] ### Step 2: Find the second derivative To determine the concavity of the function, we need to compute the second derivative \( f''(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.4|16 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.2|10 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

(cos alpha+cos beta)^(2)+(s in alpha+s in beta)^(2)=lambda cos^(2)((alpha-beta)/(2)) write the value of lambda

If alpha+beta-gamma=pi, and sin^(2)alpha+sin^(2)beta-sin^(2)gamma=lambda s in alpha s in beta cos gamma then write the value of lambda

underset is f(alpha. beta)=cos^(2)+beta cos^(2)(alpha+beta)-2cos alpha cos beta cos(alpha+beta)

If f(alpha,beta)=cos^(2)alpha+sin^(2)alpha cos2 beta then which of the following is incorrect

If alpha and beta are the roots of the equation x^(2)-5 lambda x-lambda^(2)=0 and alpha^(2)+beta^(2)=27/4 ,then the value of lambda^(2) is

Consider f(x)=x^(2)(alpha+beta)-x(alpha+4 beta)+3 beta-2 alpha then identify the (alpha,beta in R and alpha,beta!=0)

If alpha and beta are the roots of equation (k+1) tan^(2)x-sqrt2lambda, tan=1-k and tan^(2)(alpha+beta)=50 . Find the value of lambda