Home
Class 12
MATHS
Prove that (a(1)^(m)+a(2)^(m)+….+a(n)^(m...

Prove that `(a_(1)^(m)+a_(2)^(m)+….+a_(n)^(m))/(n)lt((a_(1)+a_(2)+..+a_(n))/(n))^(m)` If `0ltmlt1 and a_(i)gt0` for all I.

Text Solution

Verified by Experts

Let y =`f(x)=x^(m),where x gt 0 and 0 lt mlt1`
`(d^(2)y)/(dx^(2))=m(m-1)x^(m-2lt0`
So graph is concave downward
Therefore `(a_(1)^(m)+a_(2)^(m)+…a_(n)^(m))/(n)lt(a_(1)+a_(2)+…a_(n))/(n)^(n)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.4|16 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.2|10 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Statement-1: 1^(3)+3^(3)+5^(3)+7^(3)+...+(2n-1)^(3)ltn^(4),n in N Statement-2: If a_(1),a_(2),a_(3),…,a_(n) are n distinct positive real numbers and mgt1 , then (a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(b))/(n))^(m)

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

Evaluate underset( n rarroo)("lim") ((a_(1) + 1)/( a_(1))) ((a_(2) +1)/(a_(2))) "......." ((a_(n) +1)/( a_(n))) where a_(1) 1 and a_(n) = n ( 1+ a_(n-1) ) AA n ge 2

If a_(m) be the mth term of an AP, show that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+"...."+a_(2n-1)^(2)-a_(2n)^(2)=(n)/((2n-1))(a_(1)^(2)-a_(2n)^(2)) .

If a_(1),a_(2),a_(3),...,a_(2n+1) are in A.P.then (a_(2n+1)-a_(1))/(a_(2n+1)+a_(1))+(a_(2n)-a_(2))/(a_(2n)+a_(2))+...+(a_(n+2)-a_(n))/(a_(n+2)+a_(n)) is equal to (n(n+1))/(2)xx(a_(2)-a_(1))/(a_(n+1)) b.(n(n+1))/(2) c.(n+1)(a_(2)-a_(1)) d.none of these

If a_(1),a_(2),...,a_(n)>0, then prove that (a_(1))/(a_(2))+(a_(2))/(a_(3))+(a_(3))/(a_(4))+...+(a_(n-1))/(a_(n))+(a_(n))/(a_(1))>n