Home
Class 12
MATHS
Discuss the extremum of f(x)=sinx+1/2sin...

Discuss the extremum of `f(x)=sinx+1/2sin2x+1/3sin3x ,0lt=xlt=pidot`

Text Solution

Verified by Experts

The correct Answer is:
Point of global maxima :x=`pi//4`
Point of local minima : x=2pi//3`
Point of local maxima : `x=3pi//4`

f(x) = ` sin x +1/2 sin 2x+1/3 sin 3x, 0 le x le pi`
`f(x) = cos x +cos 2x+cos3x=2 2x+cos 2x= cos 2x(2 cos x+1)`
Let f(x)=0
or cos2cx=0 or 2 cos x+1 =0
sign scheme of f(x) is as follows
Hence x =`pi//4,3pi//4` are points of maxima
`f(pi)/(4)=sin(pi)/(4)+(1)/(2)sin(pi)/(2)+(1)/(3)sin(3pi)/(4)`
`=(1)/(sqrt(2))+1/2+(1)/(sqrt(2))=(4)(3sqrt*(2))+1/2=(4sqrt(2+3)/(4))`
`f((3pi)/(4))=sin(3pi)/(4)+1/2sin((3pi)/(2))+1/3sin(9pi)/(4)`
`=(1)/(sqrt(2))-1/2+1/3(1)/(sqrt(2))=(4sqrt(2)-3)/(6)`
`f(0)=0f(pi)=0`
Thus `x=(pi)/(4)` is the point of global maxima
`x=(3pi)/(4)` is the point of local maxima and
`x=(2pi)/(3) `is the point of local minima
x=0 is he point of global maxima
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.6|9 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Discuss the extremum of f(x)=sin x+(1)/(2)sin2x+(1)/(3)sin3x,0<=x<=pi

Discuss the extremum of f(x)=(1)/(3)(x+(1)/(x))

Discuss the extremum of f(x)=x^(2)+(1)/(x^(2))

Discuss the extremum of f(x)=2x+3x^((2)/(3))

Discuss the extremum of f(x)=1+2sin x+3cos^(2)x,x<=x<=(2 pi)/(3)

Discuss the extremum of f(x)={1+sinx ,x<0x^2-x+1,xgeq0a tx=0

Discuss the extremum of f(x)=x(x^(2)-4)^(-(1)/(3))

Discuss the extremum of f(x)=sin x(1+cos x),x in(0,(pi)/(2))

Find the range of f(x) =sin^2x-3sinx+2 .