Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function `y=(log)_e(3x^4-2x^3-6x^2+6x+1)AAx in (0,2)` Given that`(3x^4-2x^3-6x^2+6x^2+6x+1)>0Ax in (0,2)`

Text Solution

Verified by Experts

The correct Answer is:
Point of local maxima :x=`1//2`
Point of local minima:x=1

`f(x) = log_(e) (3x^(4)-2x^(3)-6x^(2)+6x+1),x in(0,2)`
`f(x)=(12x^(3)-6x^(2)-12x+6)/(3x^(4)-2x^(3)-6x^(2)+6x+1)`
`=6(2x^(3)=x^(2)-2x+1)/((3x^(4)-2x^(3)-6x^(2)+6x+1)`
`=6(x^(2-2)(2x-1))/(3x^(4)-2x^(3-6x^(2)+6x+1)`
Sign scheme of f(X) is as follows:
Hence x =`1//2` is point of maxima and x =1 is point of minima
Hence `f_(min) =f(1)=ln2`
and `f_(max)=f(1//2)=ln(39//16)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.6|9 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function y=4x^3-3x^2-6x+1

Find the maximum and minimum values of the function y=log_(e)(3x^(4)-2x^(3)-6x^(2)+6x+1)AA x in(0,2) Given that (3x^(4)-2x^(3)-6x^(2)+6x^(2)+6x+1)>0Ax in(0,2)

Find the maximum and the minimum value of the function y=x^(3)+6x^(2)-15x+5

Find the maximum and minimum values of the following functions. f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8

Find the maximum and the minimum values of f(x)=3x^(2)+6x+8,x in R, if any.

If maximum & minimum value of function f(x)=x^(3)-6x^(2)+9x+1 AA x in [0, 2] are M & m respectively, then value of M – 2m is :

Find the solutions of the rational equation (x^2(x^4-81)(x+2)^3)/(x^5-x^4-6x^3)=0 .

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]