Home
Class 12
MATHS
If f(x) =sin^(4)x+cos^(4)x increases, if...

If `f(x) =sin^(4)x+cos^(4)x` increases, if

A

`0ltxltpi//8`

B

`pi//40ltxlt3pi//8`

C

`3pi//8ltxlt5pi//8`

D

`5pi//8ltxlt3pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To determine when the function \( f(x) = \sin^4 x + \cos^4 x \) is increasing, we need to find the derivative of the function and analyze its sign. ### Step-by-Step Solution: 1. **Rewrite the Function**: We start with the function: \[ f(x) = \sin^4 x + \cos^4 x \] We can simplify this using the identity \( a^2 + b^2 = (a + b)^2 - 2ab \): \[ f(x) = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ f(x) = 1 - 2\sin^2 x \cos^2 x \] 2. **Use the Double Angle Identity**: We know that \( \sin 2x = 2\sin x \cos x \), so: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2 2x \] Thus, we can rewrite \( f(x) \): \[ f(x) = 1 - \frac{1}{2} \sin^2 2x \] 3. **Differentiate the Function**: Now, we differentiate \( f(x) \): \[ f'(x) = 0 - \frac{1}{2} \cdot 2\sin 2x \cdot \cos 2x \cdot 2 \] Simplifying this gives: \[ f'(x) = -2\sin 2x \cos 2x \] Using the double angle identity again, we have: \[ f'(x) = -\sin 4x \] 4. **Determine Where the Function is Increasing**: The function \( f(x) \) is increasing when \( f'(x) > 0 \): \[ -\sin 4x > 0 \implies \sin 4x < 0 \] The sine function is negative in the intervals: \[ (n\pi, (n+1)\pi) \quad \text{for integers } n \] Therefore, we need: \[ 4x \in (n\pi, (n+1)\pi) \implies x \in \left(\frac{n\pi}{4}, \frac{(n+1)\pi}{4}\right) \] 5. **Identify Specific Intervals**: For \( n = 0 \): \[ x \in \left(0, \frac{\pi}{4}\right) \] For \( n = 1 \): \[ x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \] For \( n = 2 \): \[ x \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \] Continuing this pattern, we can see that the function will be increasing in intervals of the form: \[ x \in \left(\frac{n\pi}{4}, \frac{(n+1)\pi}{4}\right) \text{ for odd } n \] ### Summary of Intervals: The function \( f(x) \) is increasing in the intervals: - \( (0, \frac{\pi}{4}) \) - \( (\frac{\pi}{2}, \frac{3\pi}{4}) \) - and so on for other odd intervals.

To determine when the function \( f(x) = \sin^4 x + \cos^4 x \) is increasing, we need to find the derivative of the function and analyze its sign. ### Step-by-Step Solution: 1. **Rewrite the Function**: We start with the function: \[ f(x) = \sin^4 x + \cos^4 x ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|40 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|42 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.7|5 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if (A) 0 lt x lt (pi)/(8) (B) (pi)/(4) lt x lt (3pi)/(8) (C) ( 3pi)/(8) lt x lt (5pi)/(8) (D) ( 5pi)/(8) lt x lt(3pi)/(4)

The function f(x)=sin^(4)x+cos^(4)x increasing if

The function f(x)=sin^4x +cos ^4 x increases if

Period of f(x)=sin^(4)x+cos^(4)x

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

Let f(x) =sin^4x+cos^4x. Then f is increasing function in the interval

Separate the interval [0,(pi)/(2)] into sub intervals in which function f(x)=sin^(4)(x)+cos^(4)(x) is strictly increasing or decreasing.

Let f(x)=(1)/(sin^(4)x+ cos^(4)x) ,then range of f is

CENGAGE-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise (Single)
  1. If a function f(x) has f^(prime)(a)=0a n df^(a)=0, then x=a is a maxim...

    Text Solution

    |

  2. The function f(x)=sin^4x +cos ^4 x increases if

    Text Solution

    |

  3. If f(x) =sin^(4)x+cos^(4)x increases, if

    Text Solution

    |

  4. If f(x)=x^5-5x^4+5x^3-10 has local maximum and minimum at x=pa n dx=q ...

    Text Solution

    |

  5. Let P(x)=a0+a1x^2+a2x^4++an x^(2n) be a polynomial in a real variable ...

    Text Solution

    |

  6. Let f(x) ={|x|for 0< |x| , 2 for x=0

    Text Solution

    |

  7. If f(x)=x^3+b x^2+c x+d and 0<b^2<c , then f(x) is a strictly increasi...

    Text Solution

    |

  8. If f(x)={(sin(x^(2)-3x),xle0 .^x+5x^(2),xgt0

    Text Solution

    |

  9. The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (wh...

    Text Solution

    |

  10. The function f(x)=(4sin^2x-1)^n(x^2-x+1),n in N , has a local minimum...

    Text Solution

    |

  11. The true set of real values of x for which the function f(x)=xlnx-x+1 ...

    Text Solution

    |

  12. All possible value of f(x)=(x+1)^(1/3)-(x-1)^(1/3) on [0,1] is 1 (b) ...

    Text Solution

    |

  13. The function f(x)=(ln(pi+x))/(ln(e+x)) is increasing in (0,oo) decrea...

    Text Solution

    |

  14. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  15. Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

    Text Solution

    |

  16. If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

    Text Solution

    |

  17. A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local max...

    Text Solution

    |

  18. Let the function f(x) be defined as follows: f(x)={(x^(3)+x^(2)-10x,-...

    Text Solution

    |

  19. Consider the function f(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-a)/...

    Text Solution

    |

  20. F(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

    Text Solution

    |