Home
Class 12
MATHS
Let P(x)=a0+a1x^2+a2x^4++an x^(2n) be a ...

Let `P(x)=a_0+a_1x^2+a_2x^4++a_n x^(2n)` be a polynomial in a real variable `x` with `0

A

neither a maximum nor a minimum

B

only one maximum

C

only one minimum

D

only one maximum and only one minimum

Text Solution

Verified by Experts

The correct Answer is:
3

The given polynomial is
`P(x) =a_(0)x^(2)+a_(2)x^(4)…+a_(n)x^(2n),x in R`
and `0lta_(0)lta_(1)lta_(2)lt..lta_(n)`
Here we observe that all coefficients of different powers of x ltrbgt i.e j`a_(0),a_(1),a_(2)..a_(n)` are positve
Also only even power of x are involved
Therefore P(x) connot have any maximum value
Moreover P(x) connot have any maximum value
Moreover P(x) is minimum when x =0 i.e `a_(0)`
Therefore P(x) has only one minimum
Alternative method:
We have
P(x) =`2a_(1)x+4a_(2)x^(3)+..2na_(n)x^(2-1)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|40 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|42 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.7|5 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let P(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+...+a_(n)x^(2n) be a polynomial in a real variable x with 0

If P(x) = a _0 + a _1 x ^(2) + a _2 x^(4) + … + a _n x ^(2n) is a polynomial in a real variable x with 0 lt a _0 lt a _1 lt a _2 lt … lt a_n . Then, the function P (x) has

If p(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+...+a_(n)x^(2n) is a polynomial in a real variable x with 0< a_(0)< a_(1)< a_(2)<...< a_(3) . Then,the function p(x) has

Let P(x)=x^(2)+(1)/(2)x+b and Q(x)=x^(2)+cx+d be two polynomials with real coefficients such that P(x)Q(x)=Q(P(x)) for all real x. Find all the real roots of P(Q(x))=0

CENGAGE-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise (Single)
  1. If f(x) =sin^(4)x+cos^(4)x increases, if

    Text Solution

    |

  2. If f(x)=x^5-5x^4+5x^3-10 has local maximum and minimum at x=pa n dx=q ...

    Text Solution

    |

  3. Let P(x)=a0+a1x^2+a2x^4++an x^(2n) be a polynomial in a real variable ...

    Text Solution

    |

  4. Let f(x) ={|x|for 0< |x| , 2 for x=0

    Text Solution

    |

  5. If f(x)=x^3+b x^2+c x+d and 0<b^2<c , then f(x) is a strictly increasi...

    Text Solution

    |

  6. If f(x)={(sin(x^(2)-3x),xle0 .^x+5x^(2),xgt0

    Text Solution

    |

  7. The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (wh...

    Text Solution

    |

  8. The function f(x)=(4sin^2x-1)^n(x^2-x+1),n in N , has a local minimum...

    Text Solution

    |

  9. The true set of real values of x for which the function f(x)=xlnx-x+1 ...

    Text Solution

    |

  10. All possible value of f(x)=(x+1)^(1/3)-(x-1)^(1/3) on [0,1] is 1 (b) ...

    Text Solution

    |

  11. The function f(x)=(ln(pi+x))/(ln(e+x)) is increasing in (0,oo) decrea...

    Text Solution

    |

  12. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  13. Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

    Text Solution

    |

  14. If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

    Text Solution

    |

  15. A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local max...

    Text Solution

    |

  16. Let the function f(x) be defined as follows: f(x)={(x^(3)+x^(2)-10x,-...

    Text Solution

    |

  17. Consider the function f(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-a)/...

    Text Solution

    |

  18. F(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

    Text Solution

    |

  19. Let h(x)=x^(m/n) for x in R , where +m and n are odd numbers and 0<m<...

    Text Solution

    |

  20. The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the i...

    Text Solution

    |