Home
Class 12
MATHS
If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),...

If `f(x)={sin^(-1)(sinx),xgt0`
`(pi)/(2),x=0,then
cos^(-1)(cosx),xlt0`

A

x=0is apoint of maxima

B

x=0 is a point of minima

C

x=0 is a point of intersectionn

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the function defined piecewise as follows: 1. **Function Definition**: - For \( x > 0 \): \( f(x) = \sin^{-1}(\sin x) \) - For \( x = 0 \): \( f(0) = \frac{\pi}{2} \) - For \( x < 0 \): \( f(x) = \cos^{-1}(\cos x) \) 2. **Understanding the Function**: - The function \( \sin^{-1}(\sin x) \) for \( x > 0 \) simplifies to \( x \) when \( 0 < x < \frac{\pi}{2} \) because the range of \( \sin^{-1} \) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). - For \( x = 0 \), the function value is given as \( \frac{\pi}{2} \). - The function \( \cos^{-1}(\cos x) \) for \( x < 0 \) simplifies to \( -x \) when \( -\frac{\pi}{2} < x < 0 \) because the range of \( \cos^{-1} \) is \([0, \pi]\). 3. **Finding Limits**: - We need to evaluate the limits of \( f(x) \) as \( x \) approaches 0 from the left and right. - **Limit from the right** (\( x \to 0^+ \)): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \sin^{-1}(\sin x) = 0 \] - **Limit from the left** (\( x \to 0^- \)): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \cos^{-1}(\cos x) = \cos^{-1}(1) = 0 \] 4. **Value at \( x = 0 \)**: - From the problem statement, we have \( f(0) = \frac{\pi}{2} \). 5. **Comparing Values**: - We find: - \( \lim_{x \to 0^+} f(x) = 0 \) - \( \lim_{x \to 0^-} f(x) = 0 \) - \( f(0) = \frac{\pi}{2} \) 6. **Conclusion**: - Since \( f(0) = \frac{\pi}{2} \) is greater than both the left-hand limit and right-hand limit, we conclude that \( x = 0 \) is a local maximum point. ### Final Result: The maximum point of the function occurs at \( x = 0 \) with \( f(0) = \frac{\pi}{2} \). ---

To solve the given problem, we need to analyze the function defined piecewise as follows: 1. **Function Definition**: - For \( x > 0 \): \( f(x) = \sin^{-1}(\sin x) \) - For \( x = 0 \): \( f(0) = \frac{\pi}{2} \) - For \( x < 0 \): \( f(x) = \cos^{-1}(\cos x) \) 2. **Understanding the Function**: ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|40 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|42 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.7|5 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(sin(cos^(-1)x)+cos(sin^(-1)x)",",xle0),(sin(cos^(-1)x)-cos(sin^(-1)x)",",xgt0):} then at x = 0

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

If f(x)={{:((sin(a+1)x+2sinx)/x", "xlt0),(2" ,"x=0),((sqrt(1+bx)-1)/x" ,"xgt0):} is continuous at x = 0, then find the values of 'a' and 'b'.

If f(x)= {{:(a+(sin[x])/x,xgt0),(2,x=0),(b+[(sinx-x)/(x^(3))],","xgt0):} (where [.] denotes the greatest integer function). If f(x) is continuous at x=0 then a+b is equal to

Show that cot^(-1)x={(tan^(-1)(1//x),xgt0),(pi+tan^(-1)(1//x),xlt0):}

Show that the function f(x) defined by : f(x)={{:((sinx)/x+cosx", "xgt0),(2", "x=0),((4(1-sqrt(1-x)))/x", "xlt0):} is continuous at x = 0.

CENGAGE-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise (Single)
  1. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  2. Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

    Text Solution

    |

  3. If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

    Text Solution

    |

  4. A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local max...

    Text Solution

    |

  5. Let the function f(x) be defined as follows: f(x)={(x^(3)+x^(2)-10x,-...

    Text Solution

    |

  6. Consider the function f(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-a)/...

    Text Solution

    |

  7. F(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

    Text Solution

    |

  8. Let h(x)=x^(m/n) for x in R , where +m and n are odd numbers and 0<m<...

    Text Solution

    |

  9. The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the i...

    Text Solution

    |

  10. The minimum value of e^(2x^2-2x+1)sin^(2x) is e (b) 1/e (c) 1 (d...

    Text Solution

    |

  11. The maximum value of x^4ehat-x^2 is e^2 (b) e^(-2) (c) 12 e^(-2) (d...

    Text Solution

    |

  12. If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b...

    Text Solution

    |

  13. The least natural number a for which x+a x^(-2)>2AAx in (0,oo) is 1 (b...

    Text Solution

    |

  14. f(x)={4x-x^3+ln(a^2-3a+3),0lt=x<3x-18 ,xgeq3 complete set of values o...

    Text Solution

    |

  15. f(x)={2-|x^2+5x+6|,x!=2a^2+1,x=-2T h e nt h er a ngeofa , so that f(x...

    Text Solution

    |

  16. A differentiable function f(x) has a relative minimum at x=0. Then the...

    Text Solution

    |

  17. if f(x)=4x^3-x^2-2x+1 and g(x)={min{f(t): 0<=t<=x; 0<=x<=1, 3-x : 1...

    Text Solution

    |

  18. If f: RvecRa n dg: RvecR are two functions such that f(x)+f^(x)=-xg(x)...

    Text Solution

    |

  19. If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan...

    Text Solution

    |

  20. If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and ...

    Text Solution

    |