Home
Class 12
MATHS
Let f(x)=x^2+(1/x^2) and g(x)=x-1/x xin...

Let `f(x)=x^2+(1/x^2)` and `g(x)=x-1/x` `xinR-{-1,0,1}`. If `h(x)=(f(x)/g(x))` then the local minimum value of `h(x)` is: (1) 3 (2) `-3` (3) `-2sqrt(2)` (4) `2sqrt(2)`

A

`2sqrt(2)`

B

3

C

-3

D

`-2sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
1

`h(x) =(x^(2)+(1)/(x^(2))/(x-(1)/(x))=(x-(1)/(x))^(2)+2)/(x-(1)/(x))=(x-(1)/(x))+(2)/(x-(1)/(x))`
Let `x-(1)/(x)=z`
For local minimum value of `h(x) let zgt0`
`therefore h(x) =z+(2)/(z)=sqrt(z)-sqrt(2)/(z)^(2)+2sqrt(2)ge2sqrt(2)`
So local minimum value of h(x) is `2sqrt(2)`
if `zlt0` then
`h(x)=-[-a-(2)/(z)]=-[sqrt(-z)-sqrt(2)/(-z)]^(2)-2sqrt(2)le-2sqrt(2)`
So `-2sqrt(2)` is locall maximum value of h(x)
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|20 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)+((1)/(x^(2))) and g(x)=x-(1)/(x)xi nR-{-1,0,1}. If h(x)=((f(x))/(g(x))) then the local minimum value of h(x) is: (1)3(2)-3(3)-2sqrt(2)(4)2sqrt(2)

Let f(x)=1+sqrt(x) and g(x)=(2x)/(x^(2)+1)

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

If int(x-1)/(x^(2)sqrt(2x^(2)-2x-1))dx=(sqrt(f(x)))/(g(x))+c then the value of f(x) and g(x) is

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=x^2+(1)/(x^2), g(x)=x^4+(1)/(x^4) and a+(1)/(a)=3 , then the respectively values of f(a) and g(a) are

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If (f(x))/(g(x))=h(x) where g(x)=sqrt(1-|(x^(2))/(x-1)|) and h(x)=(1)/(sqrt(|x-1|-[x])) then the domain of f(x)