Home
Class 12
PHYSICS
The equation of a standing wave, set up ...

The equation of a standing wave, set up in a string is, y=0.8 sin[(0.314`cm^(-1)`)x]cos[(1200`pis^(-1)`)t]. Calculate the smallest possible length of the living.

Text Solution

Verified by Experts

The correct Answer is:
10 cm
Promotional Banner

Topper's Solved these Questions

  • WAVES

    AAKASH INSTITUTE|Exercise Assignment (Section-J) (Subjective Type Questions)|4 Videos
  • WAVES

    AAKASH INSTITUTE|Exercise Assignment (Section-J) (Paragraph Type Questions)|4 Videos
  • WAVES

    AAKASH INSTITUTE|Exercise Assignment (Section-H) (Mutiple true-false type questions)|3 Videos
  • WAVE OPTICS

    AAKASH INSTITUTE|Exercise Assignment (Section-J (Aakash Challengers question))|1 Videos
  • WORK, ENERGY AND POWER

    AAKASH INSTITUTE|Exercise Assignment (SECTION - D)|15 Videos

Similar Questions

Explore conceptually related problems

The equation of a standing wave, produced on a string fixed at both ends, is y = (0.4 cm) sin[(0.314 cm^-1) x] cos[(600pis^-1)t] What could be the smallest length of the string ?

The equational of a stationary wave in a string is y=(4mm) sin [(314m^(-1)x] cos omegat . Select the correct alternative (s).

The equation for a wave travelling in x-direction on a string is y =(3.0cm)sin[(3.14 cm^(-1) x - (314s^(-1))t] (a) Find the maximum velocity of a particle of the string. (b) Find the acceleration of a particle at x =6.0 cm at time t = 0.11 s.

The equation for the vibration of a string fixed at both ends vibrating in its third harmonic is given by y=2cm sin[(0.6cm^-1)x]cos[(500pis^-1)t] . The length of the string is

The equation of a wave travelling on a string is y = (0.10 mm) sin [(31.4 m^(-1)) x + (314 s^(-1))t] (a) In which direction does the travel? (b) Find the wave speed, the wavelength and the frequency of the wave. ( c ) What is the maximum displacement and the maximum speed of a portion of the string?

The equation for a wave travelling in x-direction 0n a string is y = (3.0 cm) sin [(3.14 cm^(-1) x -(314 s^(-1)t] (a) Find the maximum velocity of a particle of the string. (b) Find the acceleration of a particle at x = 6.0 cm at time t = 0.11 s

The equation for the vibration of a string fixed at both ends vibrating in its second harmonic is given by y=2sin(0.3cm^(-1))xcos((500pis^(-1))t)cm . The length of the string is :

The equation of a wave travelling on a string is y=(0.10mm)sin[3.14m^-1)x+(314s^-1)t] . (a) In which direction does the wave travel ? (b) Find the wave speed, the wavelength and the frequency of the wave. (c) What is the maximum displacement and the maximum speed of a portion of the string ?

The equation for the vibration of a string, fixed at both ends vibrating in its third harmonic, is given by y = (0.4 cm) sin[(0.314 cm^-1) x] cos[f(600pis^-1)t] .(a) What is the frequency of vibration ? (b) What are the positions of the nodes ? (c) What is the length of the string ? (d) What is the wavelength and the speed of two travelling waves that can interfere to give this vibration ?

The equation for a wave travelling in x-direction on a string is : y = (3 cm) sin [(pi cm^(-1)) x - (314)s^(-1)t] Then find acceleration of a particle at x = 6 cm at t = 0.11 sec-