Home
Class 12
MATHS
Prove that s in^(-1)(8/(17))+sin^(-1)(3/...

Prove that `s in^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))`

Text Solution

Verified by Experts

Let `sin^(-1)(3/5)=theta`
`rArrsintheta=3/5`
`costheta=4/5`
`and sin^(-1)(8/17)=phi`
`rArrsinphi=8/17`
`rArr cosphi=15/17`

Now `cos(theta+phi)=costhetacosphi-sinthetasinphi`
`=4/5xx15/17-3/5xx8/17`
`=(60-24)/85`
`=36/85`
`rArrtheta+phi=cos^(-1)36/85`
`rArrsin^(-1)(3/5)+sin^(-1)(8/17)=cos^(-1)(36/85)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=cos^(-1)((36)/(85))

Prove that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)((77)/(85))=tan^(-1)((77)/(36))

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Show that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)(77/85)

sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=

Prove that: sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=tan^(-1)((77)/(6))

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Show that sin^(-1)((3)/(5))-sin^(-1)((8)/(17))=cos^(-1)((84)/(85))

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

Prove that :tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)