Home
Class 12
MATHS
Prove that sin^(-1) (2xsqrt(1-x^2))=2cos...

Prove that `sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1`

Text Solution

AI Generated Solution

To prove that \( \sin^{-1}(2x\sqrt{1-x^2}) = 2\cos^{-1}(x) \) for \( \frac{1}{\sqrt{2}} \leq x \leq 1 \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \sin \theta \) Let \( x = \sin \theta \). Then, we have: \[ \sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta \] This gives us: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

If -1le x le -(1)/(sqrt(2)) , then prove that sin^(-1)(2xsqrt(1-x^2))=-2pi+2cos^(-1)x .

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

sin^(-1)(xsqrt(x)),0 le x le 1

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that: i) sin^(-1)(3x-4x^(3))=3sin^(-1)x, |x| le 1/2 ii) cos^(-1)(4x^(2)-3x)=3cos^(-1)x,1/2 le x le 1 iii) tan^(-1)""(3x-x^(3))/(1-3x^(2))=3tan^(-1)x, |x| lt 1/sqrt(3) iv) tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""(3x-x^(3))/(1-3x^(2))

Prove that : tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) =2sin^(- 1)x when : - 1/(sqrt(2)) le x le 1/(sqrt(2))

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=