Home
Class 12
MATHS
Solve for x, tan^(-1)2x+tan^(-1)3x=pi/4...

Solve for x, `tan^(-1)2x+tan^(-1)3x=pi/4`

Text Solution

AI Generated Solution

To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Apply the tangent function to both sides Since \( \tan^{-1}(a) + \tan^{-1}(b) = \frac{\pi}{4} \), we can take the tangent of both sides: \[ \tan\left(\tan^{-1}(2x) + \tan^{-1}(3x)\right) = \tan\left(\frac{\pi}{4}\right) \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Solve for x when tan^(-1)2x+tan^(-1)3x=n pi+(3 pi)/(4)

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

Solve tan^(-1)2x + tan^(-1)3x = pi/4

Solve :tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

Solve for x : tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)2/3 , where x sqrt(3)

Solve for x : tan^(-1)(x/2)+tan^(-1)(x/3)=pi/4 , 0

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x