Home
Class 12
MATHS
Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(...

Let `f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x`. Then the sum of the maximum and minimum values of f(x) is

A

`pi`

B

`2pi`

C

`3pi`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=sin^(-1)2x+cos^(-1)2x+sec^(-1)2x`
`f(x)=pi/2+sec^(-1)2x`
`f(x)=pi/2+sec^(-1)2x`
Graph of `sec^(-1)2x` is as following
`(f(x))_("minimum")=pi/2+0=pi/2`
`(f(x))_("minimum")=pi/2+pi=(3pi)/2`
Sum `=pi/2+(3pi)/2`
`2pi`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise TRY YOURSELF|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin x+cos x+tan x+sin^(-1)x+cos^(-1)x+tan^(-1)x Then find the maximum and minimum values of f(x)

Find the maximum and minimum values of f(x)=sec x+log cos^(2)x,0

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

If f(x)=cos2x+4sin x+5, then the difference of maximum and minimum values of f(x) is

Let f(x)=cos^(-1)(2x^(2)-1) then

Let f(x)=x+(1)/(x),xne0. Discuss the maximum and minimum value of f(x).

If f(x)=sin^(6)x+cos^(6)x and M_(1) and M_(2) be the maximum and minimum values of f(x) for all values of t then M_(1)-M_(2) is equal to

If f(x)=max(sin x,cos x) Vx e R. Then sum ofmaximum and minimum values of f(x) is M then find (1)/(M+(1)/(sqrt(2)))

If f(x)=sin(2x)+5 then the minimum value of f(x) is