Home
Class 12
MATHS
Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)...

Evaluate `2tan^(-1)(1/2)+tan^(-1)(1/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{4}\right) \), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite \( 2\tan^{-1}\left(\frac{1}{2}\right) \) as: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{2}\right) \] Thus, the expression becomes: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{4}\right) \] ### Step 2: Apply the formula for the sum of arctangents We use the formula: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] for \( x = \frac{1}{2} \) and \( y = \frac{1}{2} \). ### Step 3: Calculate \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{2}\right) \) Using the formula: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{2}}{1 - \frac{1}{2} \cdot \frac{1}{2}}\right) \] Calculating the numerator: \[ \frac{1}{2} + \frac{1}{2} = 1 \] Calculating the denominator: \[ 1 - \frac{1}{4} = \frac{3}{4} \] Thus, we have: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{1}{\frac{3}{4}}\right) = \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 4: Add \( \tan^{-1}\left(\frac{4}{3}\right) \) and \( \tan^{-1}\left(\frac{1}{4}\right) \) Now we need to evaluate: \[ \tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{1}{4}\right) \] Using the formula again: \[ \tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \tan^{-1}\left(\frac{\frac{4}{3} + \frac{1}{4}}{1 - \frac{4}{3} \cdot \frac{1}{4}}\right) \] ### Step 5: Calculate the numerator and denominator Calculating the numerator: \[ \frac{4}{3} + \frac{1}{4} = \frac{16 + 3}{12} = \frac{19}{12} \] Calculating the denominator: \[ 1 - \frac{4}{12} = 1 - \frac{1}{3} = \frac{2}{3} \] Thus, we have: \[ \tan^{-1}\left(\frac{\frac{19}{12}}{\frac{2}{3}}\right) = \tan^{-1}\left(\frac{19 \cdot 3}{12 \cdot 2}\right) = \tan^{-1}\left(\frac{57}{24}\right) \] ### Final Result So, the final result of the expression \( 2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{4}\right) \) is: \[ \tan^{-1}\left(\frac{57}{24}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan^(-1).(1)/(2)+ tan^(-1).(1)/(3) .

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3 .

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

Find the value of 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)

tan^-1 (1/2) + tan^-1 (1/3) = π/4

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

AAKASH INSTITUTE-INVERSE TRIGONOMETRIC FUNCTIONS-TRY YOURSELF
  1. Find the principal value of cos^(-1)(1/2).

    Text Solution

    |

  2. Find the principal value of the following (i) sin^(-1).(1)/(2) ...

    Text Solution

    |

  3. Find the principal value of cot^(-1)(-sqrt3)

    Text Solution

    |

  4. Find the principal value of sec^(-1)(2/sqrt3)

    Text Solution

    |

  5. Find the principal value of cosec^(-1)(-2/sqrt3).

    Text Solution

    |

  6. Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^...

    Text Solution

    |

  7. Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^...

    Text Solution

    |

  8. Find the principal value of cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(...

    Text Solution

    |

  9. Find the principal value of sin^(-1)(-1/sqrt2)-2tan^(-1)(-sqrt3)+cos^(...

    Text Solution

    |

  10. Find tan^(-1)(3)+cot^(-1)(-1/3)+sec^(-1)2.

    Text Solution

    |

  11. If tan^(-1)x+2cot^(-1)x=(5pi)/6, then find x.

    Text Solution

    |

  12. Evaluate tan(cosec^(-1)(5/3)).

    Text Solution

    |

  13. Simplify cos(tan^(-1)(sin(cot^(-1)x))), x in (0,1).

    Text Solution

    |

  14. Prove that tan^(-1)(1/70)-tan^(-1)(1/99)=tan^(-1)(1/239)

    Text Solution

    |

  15. Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi.

    Text Solution

    |

  16. Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

    Text Solution

    |

  17. Simplity tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)(1-y^(2))/(1+y^(2)...

    Text Solution

    |

  18. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  19. tan^(-1)""[(a cos x -b sinx)/(b cosx+a sinx)] को सरल कीजिए, यदि ""(a)...

    Text Solution

    |

  20. Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)

    Text Solution

    |