Home
Class 12
MATHS
if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 ...

if `tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4` then x equals

A

`1/sqrt5`

B

`4/sqrt5`

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Set up the equation Given: \[ \tan^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) = \frac{\pi}{4} \] ### Step 2: Express \(\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\) as an angle \(\theta\) Let: \[ \theta = \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \] This implies: \[ \cos \theta = \frac{2}{\sqrt{5}} \] ### Step 3: Construct a right triangle From \(\cos \theta = \frac{2}{\sqrt{5}}\), we can construct a right triangle where: - Adjacent side = 2 - Hypotenuse = \(\sqrt{5}\) Using the Pythagorean theorem, we can find the opposite side: \[ \text{Opposite side} = \sqrt{(\sqrt{5})^2 - 2^2} = \sqrt{5 - 4} = 1 \] ### Step 4: Find \(\tan \theta\) Now, we can find \(\tan \theta\): \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{1}{2} \] ### Step 5: Rewrite the original equation Substituting \(\tan \theta\) back into the equation: \[ \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{4} \] ### Step 6: Use the tangent addition formula Using the formula for the tangent of the sum of angles: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \quad \text{if } ab < 1 \] Here, \(a = \frac{1}{x}\) and \(b = \frac{1}{2}\). Therefore: \[ \tan^{-1}\left(\frac{\frac{1}{x} + \frac{1}{2}}{1 - \frac{1}{x} \cdot \frac{1}{2}}\right) = \frac{\pi}{4} \] ### Step 7: Set the tangent equal to 1 Since \(\tan\left(\frac{\pi}{4}\right) = 1\), we have: \[ \frac{\frac{1}{x} + \frac{1}{2}}{1 - \frac{1}{2x}} = 1 \] ### Step 8: Cross-multiply and simplify Cross-multiplying gives: \[ \frac{1}{x} + \frac{1}{2} = 1 - \frac{1}{2x} \] Multiplying through by \(2x\) to eliminate the fractions: \[ 2 + x = 2x - 1 \] ### Step 9: Rearranging the equation Rearranging gives: \[ 2 + 1 = 2x - x \] \[ 3 = x \] ### Step 10: Conclusion Thus, the value of \(x\) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If "tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=pi/2 , then the value of x is equal to

If tan(cos^(-1)x)=sin(cot^(-1)1/2) then x is equal to- a.1/sqrt(5)b.2/sqrt(5)c.3/sqrt(5)d.sqrt(5)/3

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then:

If tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=(1)/(2)cos^(-1)x then x is equal to

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

AAKASH INSTITUTE-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If "sin"{cot^(-1)(x+1)}="cos"(tan^(-1)x), then find xdot

    Text Solution

    |

  2. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  3. if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

    Text Solution

    |

  4. If 0 < x <1, then sqrt(1+x^2)[{xcos(cot^-1x)+sin(cot^-1 x)}^2-1]^(1/2)...

    Text Solution

    |

  5. If x1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x2=sin^(-1)(3/5)+sin^(-1)(...

    Text Solution

    |

  6. If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

    Text Solution

    |

  7. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  8. Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexg...

    Text Solution

    |

  9. sin^(-1) (5/x) +sin^(-1) (12/x) =pi/2

    Text Solution

    |

  10. tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),absxx le...

    Text Solution

    |

  11. If cos^(-1)(x/m)+cos^(-1)(y/n)=theta, then x^2/m^2-(2xy)/(mn)costheta+...

    Text Solution

    |

  12. tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

    Text Solution

    |

  13. cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

    Text Solution

    |

  14. If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

    Text Solution

    |

  15. The value of cos^(-1)(-1)+sin^(-1)(1) is

    Text Solution

    |

  16. If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

    Text Solution

    |

  17. The domain of the function f(x)=cos^(-1)((2-absx)/4) is

    Text Solution

    |

  18. The domain of the function given by f(x)=sqrt(sin^(-1)(2x)+pi/6) is

    Text Solution

    |

  19. tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0, then x is

    Text Solution

    |