Home
Class 12
MATHS
sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-...

`sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+tan^(-1)(-1)+sec^(-1)(sqrt2)` equals

A

`(9pi)/4`

B

`(19pi)/12`

C

`(3pi)/2`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}(-\frac{1}{2}) + \cos^{-1}(-\frac{1}{2}) + \cot^{-1}(-\sqrt{3}) + \csc^{-1}(\sqrt{2}) + \tan^{-1}(-1) + \sec^{-1}(\sqrt{2}) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \sin^{-1}(-\frac{1}{2}) \) Using the property \( \sin^{-1}(-x) = -\sin^{-1}(x) \): \[ \sin^{-1}(-\frac{1}{2}) = -\sin^{-1}(\frac{1}{2}) = -\frac{\pi}{6} \] **Hint:** Remember that the inverse sine function is odd. ### Step 2: Evaluate \( \cos^{-1}(-\frac{1}{2}) \) Using the property \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \): \[ \cos^{-1}(-\frac{1}{2}) = \pi - \cos^{-1}(\frac{1}{2}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] **Hint:** The inverse cosine function reflects across \( \pi/2 \). ### Step 3: Evaluate \( \cot^{-1}(-\sqrt{3}) \) Using the property \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \): \[ \cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \] **Hint:** The inverse cotangent function also reflects across \( \pi/2 \). ### Step 4: Evaluate \( \csc^{-1}(\sqrt{2}) \) Since \( \csc^{-1}(x) \) is defined for positive \( x \): \[ \csc^{-1}(\sqrt{2}) = \frac{\pi}{4} \] **Hint:** The cosecant function is the reciprocal of sine. ### Step 5: Evaluate \( \tan^{-1}(-1) \) Using the property \( \tan^{-1}(-x) = -\tan^{-1}(x) \): \[ \tan^{-1}(-1) = -\tan^{-1}(1) = -\frac{\pi}{4} \] **Hint:** The inverse tangent function is odd. ### Step 6: Evaluate \( \sec^{-1}(\sqrt{2}) \) Since \( \sec^{-1}(x) \) is defined for positive \( x \): \[ \sec^{-1}(\sqrt{2}) = \frac{\pi}{4} \] **Hint:** The secant function is the reciprocal of cosine. ### Final Calculation Now we combine all the results: \[ -\frac{\pi}{6} + \frac{2\pi}{3} + \frac{5\pi}{6} + \frac{\pi}{4} - \frac{\pi}{4} + \frac{\pi}{4} \] Combining the terms: 1. Combine \( -\frac{\pi}{6} + \frac{5\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \) 2. Now add \( \frac{2\pi}{3} + \frac{2\pi}{3} = \frac{4\pi}{3} \) 3. Finally, adding \( \frac{4\pi}{3} + 0 = \frac{4\pi}{3} \) ### Conclusion The final result is: \[ \frac{4\pi}{3} \] ### Summary of Steps: 1. Evaluate \( \sin^{-1}(-\frac{1}{2}) \) to get \( -\frac{\pi}{6} \). 2. Evaluate \( \cos^{-1}(-\frac{1}{2}) \) to get \( \frac{2\pi}{3} \). 3. Evaluate \( \cot^{-1}(-\sqrt{3}) \) to get \( \frac{5\pi}{6} \). 4. Evaluate \( \csc^{-1}(\sqrt{2}) \) to get \( \frac{\pi}{4} \). 5. Evaluate \( \tan^{-1}(-1) \) to get \( -\frac{\pi}{4} \). 6. Evaluate \( \sec^{-1}(\sqrt{2}) \) to get \( \frac{\pi}{4} \). 7. Combine all results to find the final answer. **Final Answer:** \( \frac{4\pi}{3} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(1/2)+cos^(-1)(1/sqrt2)=?

cosec^(-1)(-sqrt(2))+cot^(-1)(sqrt(3))=

tan ^(-1)(1) + cos^(-1)(1/sqrt2) + sin^(-1)(1/2)

1. sin^(-1) (-1/2) = 2. tan^(-1) (-sqrt3) =

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

Find the principal values of the following : (i) sin ^(-1) ((-sqrt(3))/(2)) (ii) cot^(-1)sqrt(-3) (iii) cos^(-1)(-(1)/(2)) (iv) cosec^(-1)(sqrt(2)) (v) tan^(-1) (vi) cosec^(-1)(-1)

AAKASH INSTITUTE-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If the number of solutions of sin^-1 x+|x|=1 cos^-1 x+|x|=1, tan^-1 x...

    Text Solution

    |

  2. Let xi in [-1,1]" for "i=1,2,3,…24, such that sin^(-1)x1+sin^(-1)x2+…+...

    Text Solution

    |

  3. sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+t...

    Text Solution

    |

  4. Let [] represents the greatest integer function and [cos^(-1)sin^(-1)t...

    Text Solution

    |

  5. The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5p...

    Text Solution

    |

  6. How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

    Text Solution

    |

  7. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |

  8. If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

    Text Solution

    |

  9. Let cos^-1 (x/2)+cos^-1 (y/3)=theta and denote by f(x,y,theta)=0 the r...

    Text Solution

    |

  10. If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, then 1/(xy)+1/(yz)+1/(zx)=

    Text Solution

    |

  11. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

    Text Solution

    |

  12. If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)...

    Text Solution

    |

  13. Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

    Text Solution

    |

  14. If alpha= tan^-1 ((sqrt3 x)/(2lamda-x)), beta= tan^-1 ((2x-lamda)/(lam...

    Text Solution

    |

  15. The value of tan[1/2cos^(-1).sqrt5/3] is

    Text Solution

    |

  16. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  17. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  18. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  19. cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cosalpha))=x, x, ge 0, then sin x...

    Text Solution

    |

  20. If |cos^-1((1-x^2)/(1+x^2))| < pi/3, then x belongs to the interval

    Text Solution

    |