Home
Class 12
MATHS
STATEMENT -1 : The value of tan^(-1)x+ta...

STATEMENT -1 : The value of `tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0}`. and STATEMENT -2 : The value of `tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}`

A

Statement -1 is True, Statement-2 is True, Statement -2 is a correct explanation for Statement -4

B

Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement -4

C

Statement-1 is True, Statement -2 is False

D

Statement -1 is False, Statement -2 is True

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - G)(INTEGER ANSWER TYPE QUESTIONS)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - H)(MULTIPLE TRUE-FALSE TYPE QUESTIONS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

3tan^(-1)x+cot^(-1)x=pi

prove that tan^(-1)x+cot^(-1)x=pi/2

tan^(-1)(cot x)-tan^(-1)(cot2x)=

Show that cot^(-1)x={(tan^(-1)(1//x),xgt0),(pi+tan^(-1)(1//x),xlt0):}

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

Write the value of tan^(-1)(1/x) for x<0 in terms of cot^(-1)(x) .